File size: 9,708 Bytes
a891a57
 
 
 
 
 
731714c
 
a891a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# coding: utf-8

"""
Pipeline of LivePortrait
"""

import torch
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning

import cv2
import numpy as np
import pickle
import os.path as osp
from rich.progress import track

from .config.argument_config import ArgumentConfig
from .config.inference_config import InferenceConfig
from .config.crop_config import CropConfig
from .utils.cropper import Cropper
from .utils.camera import get_rotation_matrix
from .utils.video import images2video, concat_frames
from .utils.crop import _transform_img, prepare_paste_back, paste_back
from .utils.retargeting_utils import calc_lip_close_ratio
from .utils.io import load_image_rgb, load_driving_info, resize_to_limit
from .utils.helper import mkdir, basename, dct2cuda, is_video, is_template
from .utils.rprint import rlog as log
from .live_portrait_wrapper import LivePortraitWrapper


def make_abs_path(fn):
    return osp.join(osp.dirname(osp.realpath(__file__)), fn)


class LivePortraitPipeline(object):

    def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
        self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(cfg=inference_cfg)
        self.cropper = Cropper(crop_cfg=crop_cfg)

    def execute(self, args: ArgumentConfig):
        inference_cfg = self.live_portrait_wrapper.cfg # for convenience
        ######## process source portrait ########
        img_rgb = load_image_rgb(args.source_image)
        img_rgb = resize_to_limit(img_rgb, inference_cfg.ref_max_shape, inference_cfg.ref_shape_n)
        log(f"Load source image from {args.source_image}")
        crop_info = self.cropper.crop_single_image(img_rgb)
        source_lmk = crop_info['lmk_crop']
        img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
        if inference_cfg.flag_do_crop:
            I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
        else:
            I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
        x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
        x_c_s = x_s_info['kp']
        R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
        f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
        x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)

        if inference_cfg.flag_lip_zero:
            # let lip-open scalar to be 0 at first
            c_d_lip_before_animation = [0.]
            combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
            if combined_lip_ratio_tensor_before_animation[0][0] < inference_cfg.lip_zero_threshold:
                inference_cfg.flag_lip_zero = False
            else:
                lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
        ############################################

        ######## process driving info ########
        if is_video(args.driving_info):
            log(f"Load from video file (mp4 mov avi etc...): {args.driving_info}")
            # TODO: 这里track一下驱动视频 -> 构建模板
            driving_rgb_lst = load_driving_info(args.driving_info)
            driving_rgb_lst_256 = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst]
            I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_lst_256)
            n_frames = I_d_lst.shape[0]
            if inference_cfg.flag_eye_retargeting or inference_cfg.flag_lip_retargeting:
                driving_lmk_lst = self.cropper.get_retargeting_lmk_info(driving_rgb_lst)
                input_eye_ratio_lst, input_lip_ratio_lst = self.live_portrait_wrapper.calc_retargeting_ratio(source_lmk, driving_lmk_lst)
        elif is_template(args.driving_info):
            log(f"Load from video templates {args.driving_info}")
            with open(args.driving_info, 'rb') as f:
                template_lst, driving_lmk_lst = pickle.load(f)
            n_frames = template_lst[0]['n_frames']
            input_eye_ratio_lst, input_lip_ratio_lst = self.live_portrait_wrapper.calc_retargeting_ratio(source_lmk, driving_lmk_lst)
        else:
            raise Exception("Unsupported driving types!")
        #########################################

        ######## prepare for pasteback ########
        if inference_cfg.flag_pasteback:
            mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
            I_p_paste_lst = []
        #########################################

        I_p_lst = []
        R_d_0, x_d_0_info = None, None
        for i in track(range(n_frames), description='Animating...', total=n_frames):
            if is_video(args.driving_info):
                # extract kp info by M
                I_d_i = I_d_lst[i]
                x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i)
                R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll'])
            else:
                # from template
                x_d_i_info = template_lst[i]
                x_d_i_info = dct2cuda(x_d_i_info, inference_cfg.device_id)
                R_d_i = x_d_i_info['R_d']

            if i == 0:
                R_d_0 = R_d_i
                x_d_0_info = x_d_i_info

            if inference_cfg.flag_relative:
                R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
                delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
                scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
                t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
            else:
                R_new = R_d_i
                delta_new = x_d_i_info['exp']
                scale_new = x_s_info['scale']
                t_new = x_d_i_info['t']

            t_new[..., 2].fill_(0) # zero tz
            x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new

            # Algorithm 1:
            if not inference_cfg.flag_stitching and not inference_cfg.flag_eye_retargeting and not inference_cfg.flag_lip_retargeting:
                # without stitching or retargeting
                if inference_cfg.flag_lip_zero:
                    x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
                else:
                    pass
            elif inference_cfg.flag_stitching and not inference_cfg.flag_eye_retargeting and not inference_cfg.flag_lip_retargeting:
                # with stitching and without retargeting
                if inference_cfg.flag_lip_zero:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
                else:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
            else:
                eyes_delta, lip_delta = None, None
                if inference_cfg.flag_eye_retargeting:
                    c_d_eyes_i = input_eye_ratio_lst[i]
                    combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
                    # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
                    eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
                if inference_cfg.flag_lip_retargeting:
                    c_d_lip_i = input_lip_ratio_lst[i]
                    combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
                    # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
                    lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)

                if inference_cfg.flag_relative:  # use x_s
                    x_d_i_new = x_s + \
                        (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
                        (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
                else:  # use x_d,i
                    x_d_i_new = x_d_i_new + \
                        (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
                        (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)

                if inference_cfg.flag_stitching:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)

            out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
            I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
            I_p_lst.append(I_p_i)

            if inference_cfg.flag_pasteback:
                I_p_i_to_ori_blend = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori)
                I_p_paste_lst.append(I_p_i_to_ori_blend)

        mkdir(args.output_dir)
        wfp_concat = None
        if is_video(args.driving_info):
            frames_concatenated = concat_frames(I_p_lst, driving_rgb_lst, img_crop_256x256)
            # save (driving frames, source image, drived frames) result
            wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4')
            images2video(frames_concatenated, wfp=wfp_concat)

        # save drived result
        wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4')
        if inference_cfg.flag_pasteback:
            images2video(I_p_paste_lst, wfp=wfp)
        else:
            images2video(I_p_lst, wfp=wfp)

        return wfp, wfp_concat