Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,643 Bytes
a891a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
# coding: utf-8
"""
This file defines various neural network modules and utility functions, including convolutional and residual blocks,
normalizations, and functions for spatial transformation and tensor manipulation.
"""
from torch import nn
import torch.nn.functional as F
import torch
import torch.nn.utils.spectral_norm as spectral_norm
import math
import warnings
def kp2gaussian(kp, spatial_size, kp_variance):
"""
Transform a keypoint into gaussian like representation
"""
mean = kp
coordinate_grid = make_coordinate_grid(spatial_size, mean)
number_of_leading_dimensions = len(mean.shape) - 1
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
coordinate_grid = coordinate_grid.view(*shape)
repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
coordinate_grid = coordinate_grid.repeat(*repeats)
# Preprocess kp shape
shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
mean = mean.view(*shape)
mean_sub = (coordinate_grid - mean)
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
return out
def make_coordinate_grid(spatial_size, ref, **kwargs):
d, h, w = spatial_size
x = torch.arange(w).type(ref.dtype).to(ref.device)
y = torch.arange(h).type(ref.dtype).to(ref.device)
z = torch.arange(d).type(ref.dtype).to(ref.device)
# NOTE: must be right-down-in
x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right
y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom
z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner
yy = y.view(1, -1, 1).repeat(d, 1, w)
xx = x.view(1, 1, -1).repeat(d, h, 1)
zz = z.view(-1, 1, 1).repeat(1, h, w)
meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
return meshed
class ConvT2d(nn.Module):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
super(ConvT2d, self).__init__()
self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
padding=padding, output_padding=output_padding)
self.norm = nn.InstanceNorm2d(out_features)
def forward(self, x):
out = self.convT(x)
out = self.norm(out)
out = F.leaky_relu(out)
return out
class ResBlock3d(nn.Module):
"""
Res block, preserve spatial resolution.
"""
def __init__(self, in_features, kernel_size, padding):
super(ResBlock3d, self).__init__()
self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
self.norm1 = nn.BatchNorm3d(in_features, affine=True)
self.norm2 = nn.BatchNorm3d(in_features, affine=True)
def forward(self, x):
out = self.norm1(x)
out = F.relu(out)
out = self.conv1(out)
out = self.norm2(out)
out = F.relu(out)
out = self.conv2(out)
out += x
return out
class UpBlock3d(nn.Module):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(UpBlock3d, self).__init__()
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = nn.BatchNorm3d(out_features, affine=True)
def forward(self, x):
out = F.interpolate(x, scale_factor=(1, 2, 2))
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class DownBlock2d(nn.Module):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(DownBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
self.norm = nn.BatchNorm2d(out_features, affine=True)
self.pool = nn.AvgPool2d(kernel_size=(2, 2))
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = F.relu(out)
out = self.pool(out)
return out
class DownBlock3d(nn.Module):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(DownBlock3d, self).__init__()
'''
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups, stride=(1, 2, 2))
'''
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = nn.BatchNorm3d(out_features, affine=True)
self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = F.relu(out)
out = self.pool(out)
return out
class SameBlock2d(nn.Module):
"""
Simple block, preserve spatial resolution.
"""
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
super(SameBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
self.norm = nn.BatchNorm2d(out_features, affine=True)
if lrelu:
self.ac = nn.LeakyReLU()
else:
self.ac = nn.ReLU()
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = self.ac(out)
return out
class Encoder(nn.Module):
"""
Hourglass Encoder
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Encoder, self).__init__()
down_blocks = []
for i in range(num_blocks):
down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
self.down_blocks = nn.ModuleList(down_blocks)
def forward(self, x):
outs = [x]
for down_block in self.down_blocks:
outs.append(down_block(outs[-1]))
return outs
class Decoder(nn.Module):
"""
Hourglass Decoder
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Decoder, self).__init__()
up_blocks = []
for i in range(num_blocks)[::-1]:
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
out_filters = min(max_features, block_expansion * (2 ** i))
up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
self.up_blocks = nn.ModuleList(up_blocks)
self.out_filters = block_expansion + in_features
self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
self.norm = nn.BatchNorm3d(self.out_filters, affine=True)
def forward(self, x):
out = x.pop()
for up_block in self.up_blocks:
out = up_block(out)
skip = x.pop()
out = torch.cat([out, skip], dim=1)
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class Hourglass(nn.Module):
"""
Hourglass architecture.
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Hourglass, self).__init__()
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
self.out_filters = self.decoder.out_filters
def forward(self, x):
return self.decoder(self.encoder(x))
class SPADE(nn.Module):
def __init__(self, norm_nc, label_nc):
super().__init__()
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
nhidden = 128
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
nn.ReLU())
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
def forward(self, x, segmap):
normalized = self.param_free_norm(x)
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
actv = self.mlp_shared(segmap)
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
out = normalized * (1 + gamma) + beta
return out
class SPADEResnetBlock(nn.Module):
def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
super().__init__()
# Attributes
self.learned_shortcut = (fin != fout)
fmiddle = min(fin, fout)
self.use_se = use_se
# create conv layers
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
if self.learned_shortcut:
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
# apply spectral norm if specified
if 'spectral' in norm_G:
self.conv_0 = spectral_norm(self.conv_0)
self.conv_1 = spectral_norm(self.conv_1)
if self.learned_shortcut:
self.conv_s = spectral_norm(self.conv_s)
# define normalization layers
self.norm_0 = SPADE(fin, label_nc)
self.norm_1 = SPADE(fmiddle, label_nc)
if self.learned_shortcut:
self.norm_s = SPADE(fin, label_nc)
def forward(self, x, seg1):
x_s = self.shortcut(x, seg1)
dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
out = x_s + dx
return out
def shortcut(self, x, seg1):
if self.learned_shortcut:
x_s = self.conv_s(self.norm_s(x, seg1))
else:
x_s = x
return x_s
def actvn(self, x):
return F.leaky_relu(x, 2e-1)
def filter_state_dict(state_dict, remove_name='fc'):
new_state_dict = {}
for key in state_dict:
if remove_name in key:
continue
new_state_dict[key] = state_dict[key]
return new_state_dict
class GRN(nn.Module):
""" GRN (Global Response Normalization) layer
"""
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
""" Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
""" Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None, scale_by_keep=True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|