Spaces:
Running
on
Zero
Running
on
Zero
# coding: utf-8 | |
""" | |
cropping function and the related preprocess functions for cropping | |
""" | |
import numpy as np | |
import os.path as osp | |
from math import sin, cos, acos, degrees | |
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) # NOTE: enforce single thread | |
from .rprint import rprint as print | |
DTYPE = np.float32 | |
CV2_INTERP = cv2.INTER_LINEAR | |
def make_abs_path(fn): | |
return osp.join(osp.dirname(osp.realpath(__file__)), fn) | |
def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None): | |
""" conduct similarity or affine transformation to the image, do not do border operation! | |
img: | |
M: 2x3 matrix or 3x3 matrix | |
dsize: target shape (width, height) | |
""" | |
if isinstance(dsize, tuple) or isinstance(dsize, list): | |
_dsize = tuple(dsize) | |
else: | |
_dsize = (dsize, dsize) | |
if borderMode is not None: | |
return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0)) | |
else: | |
return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags) | |
def _transform_pts(pts, M): | |
""" conduct similarity or affine transformation to the pts | |
pts: Nx2 ndarray | |
M: 2x3 matrix or 3x3 matrix | |
return: Nx2 | |
""" | |
return pts @ M[:2, :2].T + M[:2, 2] | |
def parse_pt2_from_pt101(pt101, use_lip=True): | |
""" | |
parsing the 2 points according to the 101 points, which cancels the roll | |
""" | |
# the former version use the eye center, but it is not robust, now use interpolation | |
pt_left_eye = np.mean(pt101[[39, 42, 45, 48]], axis=0) # left eye center | |
pt_right_eye = np.mean(pt101[[51, 54, 57, 60]], axis=0) # right eye center | |
if use_lip: | |
# use lip | |
pt_center_eye = (pt_left_eye + pt_right_eye) / 2 | |
pt_center_lip = (pt101[75] + pt101[81]) / 2 | |
pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) | |
else: | |
pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) | |
return pt2 | |
def parse_pt2_from_pt106(pt106, use_lip=True): | |
""" | |
parsing the 2 points according to the 106 points, which cancels the roll | |
""" | |
pt_left_eye = np.mean(pt106[[33, 35, 40, 39]], axis=0) # left eye center | |
pt_right_eye = np.mean(pt106[[87, 89, 94, 93]], axis=0) # right eye center | |
if use_lip: | |
# use lip | |
pt_center_eye = (pt_left_eye + pt_right_eye) / 2 | |
pt_center_lip = (pt106[52] + pt106[61]) / 2 | |
pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) | |
else: | |
pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) | |
return pt2 | |
def parse_pt2_from_pt203(pt203, use_lip=True): | |
""" | |
parsing the 2 points according to the 203 points, which cancels the roll | |
""" | |
pt_left_eye = np.mean(pt203[[0, 6, 12, 18]], axis=0) # left eye center | |
pt_right_eye = np.mean(pt203[[24, 30, 36, 42]], axis=0) # right eye center | |
if use_lip: | |
# use lip | |
pt_center_eye = (pt_left_eye + pt_right_eye) / 2 | |
pt_center_lip = (pt203[48] + pt203[66]) / 2 | |
pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0) | |
else: | |
pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0) | |
return pt2 | |
def parse_pt2_from_pt68(pt68, use_lip=True): | |
""" | |
parsing the 2 points according to the 68 points, which cancels the roll | |
""" | |
lm_idx = np.array([31, 37, 40, 43, 46, 49, 55], dtype=np.int32) - 1 | |
if use_lip: | |
pt5 = np.stack([ | |
np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye | |
np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye | |
pt68[lm_idx[0], :], # nose | |
pt68[lm_idx[5], :], # lip | |
pt68[lm_idx[6], :] # lip | |
], axis=0) | |
pt2 = np.stack([ | |
(pt5[0] + pt5[1]) / 2, | |
(pt5[3] + pt5[4]) / 2 | |
], axis=0) | |
else: | |
pt2 = np.stack([ | |
np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye | |
np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye | |
], axis=0) | |
return pt2 | |
def parse_pt2_from_pt5(pt5, use_lip=True): | |
""" | |
parsing the 2 points according to the 5 points, which cancels the roll | |
""" | |
if use_lip: | |
pt2 = np.stack([ | |
(pt5[0] + pt5[1]) / 2, | |
(pt5[3] + pt5[4]) / 2 | |
], axis=0) | |
else: | |
pt2 = np.stack([ | |
pt5[0], | |
pt5[1] | |
], axis=0) | |
return pt2 | |
def parse_pt2_from_pt_x(pts, use_lip=True): | |
if pts.shape[0] == 101: | |
pt2 = parse_pt2_from_pt101(pts, use_lip=use_lip) | |
elif pts.shape[0] == 106: | |
pt2 = parse_pt2_from_pt106(pts, use_lip=use_lip) | |
elif pts.shape[0] == 68: | |
pt2 = parse_pt2_from_pt68(pts, use_lip=use_lip) | |
elif pts.shape[0] == 5: | |
pt2 = parse_pt2_from_pt5(pts, use_lip=use_lip) | |
elif pts.shape[0] == 203: | |
pt2 = parse_pt2_from_pt203(pts, use_lip=use_lip) | |
elif pts.shape[0] > 101: | |
# take the first 101 points | |
pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip) | |
else: | |
raise Exception(f'Unknow shape: {pts.shape}') | |
if not use_lip: | |
# NOTE: to compile with the latter code, need to rotate the pt2 90 degrees clockwise manually | |
v = pt2[1] - pt2[0] | |
pt2[1, 0] = pt2[0, 0] - v[1] | |
pt2[1, 1] = pt2[0, 1] + v[0] | |
return pt2 | |
def parse_rect_from_landmark( | |
pts, | |
scale=1.5, | |
need_square=True, | |
vx_ratio=0, | |
vy_ratio=0, | |
use_deg_flag=False, | |
**kwargs | |
): | |
"""parsing center, size, angle from 101/68/5/x landmarks | |
vx_ratio: the offset ratio along the pupil axis x-axis, multiplied by size | |
vy_ratio: the offset ratio along the pupil axis y-axis, multiplied by size, which is used to contain more forehead area | |
judge with pts.shape | |
""" | |
pt2 = parse_pt2_from_pt_x(pts, use_lip=kwargs.get('use_lip', True)) | |
uy = pt2[1] - pt2[0] | |
l = np.linalg.norm(uy) | |
if l <= 1e-3: | |
uy = np.array([0, 1], dtype=DTYPE) | |
else: | |
uy /= l | |
ux = np.array((uy[1], -uy[0]), dtype=DTYPE) | |
# the rotation degree of the x-axis, the clockwise is positive, the counterclockwise is negative (image coordinate system) | |
# print(uy) | |
# print(ux) | |
angle = acos(ux[0]) | |
if ux[1] < 0: | |
angle = -angle | |
# rotation matrix | |
M = np.array([ux, uy]) | |
# calculate the size which contains the angle degree of the bbox, and the center | |
center0 = np.mean(pts, axis=0) | |
rpts = (pts - center0) @ M.T # (M @ P.T).T = P @ M.T | |
lt_pt = np.min(rpts, axis=0) | |
rb_pt = np.max(rpts, axis=0) | |
center1 = (lt_pt + rb_pt) / 2 | |
size = rb_pt - lt_pt | |
if need_square: | |
m = max(size[0], size[1]) | |
size[0] = m | |
size[1] = m | |
size *= scale # scale size | |
center = center0 + ux * center1[0] + uy * center1[1] # counterclockwise rotation, equivalent to M.T @ center1.T | |
center = center + ux * (vx_ratio * size) + uy * \ | |
(vy_ratio * size) # considering the offset in vx and vy direction | |
if use_deg_flag: | |
angle = degrees(angle) | |
return center, size, angle | |
def parse_bbox_from_landmark(pts, **kwargs): | |
center, size, angle = parse_rect_from_landmark(pts, **kwargs) | |
cx, cy = center | |
w, h = size | |
# calculate the vertex positions before rotation | |
bbox = np.array([ | |
[cx-w/2, cy-h/2], # left, top | |
[cx+w/2, cy-h/2], | |
[cx+w/2, cy+h/2], # right, bottom | |
[cx-w/2, cy+h/2] | |
], dtype=DTYPE) | |
# construct rotation matrix | |
bbox_rot = bbox.copy() | |
R = np.array([ | |
[np.cos(angle), -np.sin(angle)], | |
[np.sin(angle), np.cos(angle)] | |
], dtype=DTYPE) | |
# calculate the relative position of each vertex from the rotation center, then rotate these positions, and finally add the coordinates of the rotation center | |
bbox_rot = (bbox_rot - center) @ R.T + center | |
return { | |
'center': center, # 2x1 | |
'size': size, # scalar | |
'angle': angle, # rad, counterclockwise | |
'bbox': bbox, # 4x2 | |
'bbox_rot': bbox_rot, # 4x2 | |
} | |
def crop_image_by_bbox(img, bbox, lmk=None, dsize=512, angle=None, flag_rot=False, **kwargs): | |
left, top, right, bot = bbox | |
if int(right - left) != int(bot - top): | |
print(f'right-left {right-left} != bot-top {bot-top}') | |
size = right - left | |
src_center = np.array([(left + right) / 2, (top + bot) / 2], dtype=DTYPE) | |
tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) | |
s = dsize / size # scale | |
if flag_rot and angle is not None: | |
costheta, sintheta = cos(angle), sin(angle) | |
cx, cy = src_center[0], src_center[1] # ori center | |
tcx, tcy = tgt_center[0], tgt_center[1] # target center | |
# need to infer | |
M_o2c = np.array( | |
[[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)], | |
[-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]], | |
dtype=DTYPE | |
) | |
else: | |
M_o2c = np.array( | |
[[s, 0, tgt_center[0] - s * src_center[0]], | |
[0, s, tgt_center[1] - s * src_center[1]]], | |
dtype=DTYPE | |
) | |
if flag_rot and angle is None: | |
print('angle is None, but flag_rotate is True', style="bold yellow") | |
img_crop = _transform_img(img, M_o2c, dsize=dsize, borderMode=kwargs.get('borderMode', None)) | |
lmk_crop = _transform_pts(lmk, M_o2c) if lmk is not None else None | |
M_o2c = np.vstack([M_o2c, np.array([0, 0, 1], dtype=DTYPE)]) | |
M_c2o = np.linalg.inv(M_o2c) | |
# cv2.imwrite('crop.jpg', img_crop) | |
return { | |
'img_crop': img_crop, | |
'lmk_crop': lmk_crop, | |
'M_o2c': M_o2c, | |
'M_c2o': M_c2o, | |
} | |
def _estimate_similar_transform_from_pts( | |
pts, | |
dsize, | |
scale=1.5, | |
vx_ratio=0, | |
vy_ratio=-0.1, | |
flag_do_rot=True, | |
**kwargs | |
): | |
""" calculate the affine matrix of the cropped image from sparse points, the original image to the cropped image, the inverse is the cropped image to the original image | |
pts: landmark, 101 or 68 points or other points, Nx2 | |
scale: the larger scale factor, the smaller face ratio | |
vx_ratio: x shift | |
vy_ratio: y shift, the smaller the y shift, the lower the face region | |
rot_flag: if it is true, conduct correction | |
""" | |
center, size, angle = parse_rect_from_landmark( | |
pts, scale=scale, vx_ratio=vx_ratio, vy_ratio=vy_ratio, | |
use_lip=kwargs.get('use_lip', True) | |
) | |
s = dsize / size[0] # scale | |
tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) # center of dsize | |
if flag_do_rot: | |
costheta, sintheta = cos(angle), sin(angle) | |
cx, cy = center[0], center[1] # ori center | |
tcx, tcy = tgt_center[0], tgt_center[1] # target center | |
# need to infer | |
M_INV = np.array( | |
[[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)], | |
[-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]], | |
dtype=DTYPE | |
) | |
else: | |
M_INV = np.array( | |
[[s, 0, tgt_center[0] - s * center[0]], | |
[0, s, tgt_center[1] - s * center[1]]], | |
dtype=DTYPE | |
) | |
M_INV_H = np.vstack([M_INV, np.array([0, 0, 1])]) | |
M = np.linalg.inv(M_INV_H) | |
# M_INV is from the original image to the cropped image, M is from the cropped image to the original image | |
return M_INV, M[:2, ...] | |
def crop_image(img, pts: np.ndarray, **kwargs): | |
dsize = kwargs.get('dsize', 224) | |
scale = kwargs.get('scale', 1.5) # 1.5 | 1.6 | |
vy_ratio = kwargs.get('vy_ratio', -0.1) # -0.0625 | -0.1 | |
M_INV, _ = _estimate_similar_transform_from_pts( | |
pts, | |
dsize=dsize, | |
scale=scale, | |
vy_ratio=vy_ratio, | |
flag_do_rot=kwargs.get('flag_do_rot', True), | |
) | |
if img is None: | |
M_INV_H = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)]) | |
M = np.linalg.inv(M_INV_H) | |
ret_dct = { | |
'M': M[:2, ...], # from the original image to the cropped image | |
'M_o2c': M[:2, ...], # from the cropped image to the original image | |
'img_crop': None, | |
'pt_crop': None, | |
} | |
return ret_dct | |
img_crop = _transform_img(img, M_INV, dsize) # origin to crop | |
pt_crop = _transform_pts(pts, M_INV) | |
M_o2c = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)]) | |
M_c2o = np.linalg.inv(M_o2c) | |
ret_dct = { | |
'M_o2c': M_o2c, # from the original image to the cropped image 3x3 | |
'M_c2o': M_c2o, # from the cropped image to the original image 3x3 | |
'img_crop': img_crop, # the cropped image | |
'pt_crop': pt_crop, # the landmarks of the cropped image | |
} | |
return ret_dct | |
def average_bbox_lst(bbox_lst): | |
if len(bbox_lst) == 0: | |
return None | |
bbox_arr = np.array(bbox_lst) | |
return np.mean(bbox_arr, axis=0).tolist() | |
def prepare_paste_back(mask_crop, crop_M_c2o, dsize): | |
"""prepare mask for later image paste back | |
""" | |
if mask_crop is None: | |
mask_crop = cv2.imread(make_abs_path('./resources/mask_template.png'), cv2.IMREAD_COLOR) | |
mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize) | |
mask_ori = mask_ori.astype(np.float32) / 255. | |
return mask_ori | |
def paste_back(image_to_processed, crop_M_c2o, rgb_ori, mask_ori): | |
"""paste back the image | |
""" | |
dsize = (rgb_ori.shape[1], rgb_ori.shape[0]) | |
result = _transform_img(image_to_processed, crop_M_c2o, dsize=dsize) | |
result = np.clip(mask_ori * result + (1 - mask_ori) * rgb_ori, 0, 255).astype(np.uint8) | |
return result |