Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# @Organization : insightface.ai | |
# @Author : Jia Guo | |
# @Time : 2021-05-04 | |
# @Function : | |
from __future__ import division | |
import numpy as np | |
import cv2 | |
import onnx | |
import onnxruntime | |
from ..utils import face_align | |
from ..utils import transform | |
from ..data import get_object | |
__all__ = [ | |
'Landmark', | |
] | |
class Landmark: | |
def __init__(self, model_file=None, session=None): | |
assert model_file is not None | |
self.model_file = model_file | |
self.session = session | |
find_sub = False | |
find_mul = False | |
model = onnx.load(self.model_file) | |
graph = model.graph | |
for nid, node in enumerate(graph.node[:8]): | |
#print(nid, node.name) | |
if node.name.startswith('Sub') or node.name.startswith('_minus'): | |
find_sub = True | |
if node.name.startswith('Mul') or node.name.startswith('_mul'): | |
find_mul = True | |
if nid<3 and node.name=='bn_data': | |
find_sub = True | |
find_mul = True | |
if find_sub and find_mul: | |
#mxnet arcface model | |
input_mean = 0.0 | |
input_std = 1.0 | |
else: | |
input_mean = 127.5 | |
input_std = 128.0 | |
self.input_mean = input_mean | |
self.input_std = input_std | |
#print('input mean and std:', model_file, self.input_mean, self.input_std) | |
if self.session is None: | |
self.session = onnxruntime.InferenceSession(self.model_file, None) | |
input_cfg = self.session.get_inputs()[0] | |
input_shape = input_cfg.shape | |
input_name = input_cfg.name | |
self.input_size = tuple(input_shape[2:4][::-1]) | |
self.input_shape = input_shape | |
outputs = self.session.get_outputs() | |
output_names = [] | |
for out in outputs: | |
output_names.append(out.name) | |
self.input_name = input_name | |
self.output_names = output_names | |
assert len(self.output_names)==1 | |
output_shape = outputs[0].shape | |
self.require_pose = False | |
#print('init output_shape:', output_shape) | |
if output_shape[1]==3309: | |
self.lmk_dim = 3 | |
self.lmk_num = 68 | |
self.mean_lmk = get_object('meanshape_68.pkl') | |
self.require_pose = True | |
else: | |
self.lmk_dim = 2 | |
self.lmk_num = output_shape[1]//self.lmk_dim | |
self.taskname = 'landmark_%dd_%d'%(self.lmk_dim, self.lmk_num) | |
def prepare(self, ctx_id, **kwargs): | |
if ctx_id<0: | |
self.session.set_providers(['CPUExecutionProvider']) | |
def get(self, img, face): | |
bbox = face.bbox | |
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | |
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | |
rotate = 0 | |
_scale = self.input_size[0] / (max(w, h)*1.5) | |
#print('param:', img.shape, bbox, center, self.input_size, _scale, rotate) | |
aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate) | |
input_size = tuple(aimg.shape[0:2][::-1]) | |
#assert input_size==self.input_size | |
blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) | |
pred = self.session.run(self.output_names, {self.input_name : blob})[0][0] | |
if pred.shape[0] >= 3000: | |
pred = pred.reshape((-1, 3)) | |
else: | |
pred = pred.reshape((-1, 2)) | |
if self.lmk_num < pred.shape[0]: | |
pred = pred[self.lmk_num*-1:,:] | |
pred[:, 0:2] += 1 | |
pred[:, 0:2] *= (self.input_size[0] // 2) | |
if pred.shape[1] == 3: | |
pred[:, 2] *= (self.input_size[0] // 2) | |
IM = cv2.invertAffineTransform(M) | |
pred = face_align.trans_points(pred, IM) | |
face[self.taskname] = pred | |
if self.require_pose: | |
P = transform.estimate_affine_matrix_3d23d(self.mean_lmk, pred) | |
s, R, t = transform.P2sRt(P) | |
rx, ry, rz = transform.matrix2angle(R) | |
pose = np.array( [rx, ry, rz], dtype=np.float32 ) | |
face['pose'] = pose #pitch, yaw, roll | |
return pred | |