# coding: utf-8 """ The entrance of the gradio """ import tyro import gradio as gr import os.path as osp from src.utils.helper import load_description from src.gradio_pipeline import GradioPipeline from src.config.crop_config import CropConfig from src.config.argument_config import ArgumentConfig from src.config.inference_config import InferenceConfig import spaces import cv2 # import gdown # folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib" # gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False) def partial_fields(target_class, kwargs): return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) # set tyro theme tyro.extras.set_accent_color("bright_cyan") args = tyro.cli(ArgumentConfig) # specify configs for inference inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig gradio_pipeline = GradioPipeline( inference_cfg=inference_cfg, crop_cfg=crop_cfg, args=args ) @spaces.GPU(duration=240) def gpu_wrapped_execute_video(*args, **kwargs): return gradio_pipeline.execute_video(*args, **kwargs) @spaces.GPU(duration=240) def gpu_wrapped_execute_image(*args, **kwargs): return gradio_pipeline.execute_image(*args, **kwargs) def is_square_video(video_path): video = cv2.VideoCapture(video_path) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) video.release() if width != height: raise gr.Error("Error: the video does not have a square aspect ratio. We currently only support square videos") return gr.update(visible=True) # assets title_md = "assets/gradio_title.md" example_portrait_dir = "assets/examples/source" example_video_dir = "assets/examples/driving" data_examples = [ [osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], [osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], [osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], [osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d15.mp4"), True, True, True, True], [osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d16.mp4"), True, True, True, True], ] #################### interface logic #################### # Define components first eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio") lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio") retargeting_input_image = gr.Image(type="filepath") output_image = gr.Image(type="numpy") output_image_paste_back = gr.Image(type="numpy") output_video = gr.Video() output_video_concat = gr.Video() with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.HTML(load_description(title_md)) gr.Markdown(load_description("assets/gradio_description_upload.md")) with gr.Row(): with gr.Accordion(open=True, label="Source Portrait"): image_input = gr.Image(type="filepath") gr.Examples( examples=[ [osp.join(example_portrait_dir, "s9.jpg")], [osp.join(example_portrait_dir, "s6.jpg")], [osp.join(example_portrait_dir, "s10.jpg")], [osp.join(example_portrait_dir, "s5.jpg")], [osp.join(example_portrait_dir, "s7.jpg")], [osp.join(example_portrait_dir, "s12.jpg")], ], inputs=[image_input], cache_examples=False, ) with gr.Accordion(open=True, label="Driving Video"): video_input = gr.Video() gr.Examples( examples=[ [osp.join(example_video_dir, "d0.mp4")], [osp.join(example_video_dir, "d15.mp4")], [osp.join(example_video_dir, "d16.mp4")], [osp.join(example_video_dir, "d14_trim.mp4")], [osp.join(example_video_dir, "d6_trim.mp4")], ], inputs=[video_input], cache_examples=False, ) with gr.Row(): with gr.Accordion(open=False, label="Animation Instructions and Options"): gr.Markdown(load_description("assets/gradio_description_animation.md")) with gr.Row(): flag_relative_input = gr.Checkbox(value=True, label="relative motion") flag_do_crop_input = gr.Checkbox(value=True, label="do crop") flag_remap_input = gr.Checkbox(value=True, label="paste-back") with gr.Row(): with gr.Column(): process_button_animation = gr.Button("๐Ÿš€ Animate", variant="primary") with gr.Column(): process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="๐Ÿงน Clear") with gr.Row(): with gr.Column(): with gr.Accordion(open=True, label="The animated video in the original image space"): output_video.render() with gr.Column(): with gr.Accordion(open=True, label="The animated video"): output_video_concat.render() with gr.Row(): # Examples gr.Markdown("## You could also choose the examples below by one click โฌ‡๏ธ") with gr.Row(): gr.Examples( examples=data_examples, fn=gpu_wrapped_execute_video, inputs=[ image_input, video_input, flag_relative_input, flag_do_crop_input, flag_remap_input ], outputs=[output_image, output_image_paste_back], examples_per_page=5, cache_examples=False, ) gr.Markdown(load_description("assets/gradio_description_retargeting.md"), visible=True) with gr.Row(visible=True): eye_retargeting_slider.render() lip_retargeting_slider.render() with gr.Row(visible=True): process_button_retargeting = gr.Button("๐Ÿš— Retargeting", variant="primary") process_button_reset_retargeting = gr.ClearButton( [ eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, output_image, output_image_paste_back ], value="๐Ÿงน Clear" ) with gr.Row(visible=True): with gr.Column(): with gr.Accordion(open=True, label="Retargeting Input"): retargeting_input_image.render() gr.Examples( examples=[ [osp.join(example_portrait_dir, "s9.jpg")], [osp.join(example_portrait_dir, "s6.jpg")], [osp.join(example_portrait_dir, "s10.jpg")], [osp.join(example_portrait_dir, "s5.jpg")], [osp.join(example_portrait_dir, "s7.jpg")], [osp.join(example_portrait_dir, "s12.jpg")], ], inputs=[retargeting_input_image], cache_examples=False, ) with gr.Column(): with gr.Accordion(open=True, label="Retargeting Result"): output_image.render() with gr.Column(): with gr.Accordion(open=True, label="Paste-back Result"): output_image_paste_back.render() # binding functions for buttons process_button_retargeting.click( # fn=gradio_pipeline.execute_image, fn=gpu_wrapped_execute_image, inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input], outputs=[output_image, output_image_paste_back], show_progress=True ) process_button_animation.click( fn=gpu_wrapped_execute_video, inputs=[ image_input, video_input, flag_relative_input, flag_do_crop_input, flag_remap_input ], outputs=[output_video, output_video_concat], show_progress=True ) # image_input.change( # fn=gradio_pipeline.prepare_retargeting, # inputs=image_input, # outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image] # ) video_input.upload( fn=is_square_video, inputs=video_input, outputs=video_input ) demo.launch( server_port=args.server_port, share=args.share, server_name=args.server_name )