File size: 5,210 Bytes
e0ccd06
 
 
 
1ce20f1
e0ccd06
 
 
 
 
 
 
2433428
8c568be
e0ccd06
8c568be
e0ccd06
 
 
 
30bad6e
6f983da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce20f1
 
 
6f983da
e0ccd06
 
 
 
 
 
2018dd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0ccd06
 
 
2018dd8
 
 
 
 
5ae724e
e0ccd06
 
30bad6e
 
 
 
 
e0ccd06
 
 
 
 
30bad6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0ccd06
 
34e11d5
 
 
 
 
 
 
 
 
 
 
 
 
e0ccd06
 
e00ab88
8abfddb
e00ab88
e0ccd06
 
 
68492c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0ccd06
 
 
 
 
 
 
7719c51
e0ccd06
 
 
 
 
 
 
 
 
 
 
7719c51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from openai import OpenAI
import gradio as gr
import os
import json
import html

api_key = os.environ.get('FEATHERLESS_API_KEY')
client = OpenAI(
    base_url="https://api.featherless.ai/v1",
    api_key=api_key
)

SYSTEM_PROMPT = """You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""

def respond(message, history, model):
    history_openai_format = [{"role": "system", "content": SYSTEM_PROMPT}]
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human })
        history_openai_format.append({"role": "assistant", "content":assistant})
    history_openai_format.append({"role": "user", "content": message})

    response = client.chat.completions.create(
        model=model,
        messages= history_openai_format,
        temperature=1.0,
        stream=True,
        max_tokens=2000,
        extra_headers={
            'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
            'X-Title': "HF's missing inference widget"
        }
    )

    partial_message = ""
    for chunk in response:
        if chunk.choices[0].delta.content is not None:
              content = chunk.choices[0].delta.content
              escaped_content = html.escape(content)
              partial_message += escaped_content
              yield partial_message

logo = open('./logo.svg').read()

with open('./model-cache.json', 'r') as f_model_cache:
    model_cache = json.load(f_model_cache)


model_class_filter = {
    "mistral-v02-7b-std-lc": True,
    "llama3-8b-8k": True,
    "llama2-solar-10b7-4k": True,
    "mistral-nemo-12b-lc": True,
    "llama2-13b-4k": True,
    "llama3-15b-8k": True,

    "qwen2-32b-lc":False,
    "llama3-70b-8k":False,
    "qwen2-72b-lc":False,
    "mixtral-8x22b-lc":False,
    "llama3-405b-lc":False,
}

def build_model_choices():
    all_choices = []
    for model_class in model_cache:
        if model_class not in model_class_filter:
            print(f"Warning: new model class {model_class}. Treating as blacklisted")
            continue

        if not model_class_filter[model_class]:
            continue
        all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ]

    # and add one more ...
    model_class = "llama3-70b-8k"
    model_id = "mattshumer/Reflection-Llama-3.1-70B"
    all_choices += [(f"{model_id} ({model_class})", model_id)]

    return all_choices

model_choices = build_model_choices()

def initial_model(referer=None):
    return "mattshumer/Reflection-Llama-3.1-70B"

    # if referer == 'http://127.0.0.1:7860/':
    #     return 'Sao10K/Venomia-1.1-m7'

    # if referer and referer.startswith("https://huggingface.co/"):
    #     possible_model = referer[23:]
    #     full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), [])
    #     model_is_supported = possible_model in full_model_list
    #     if model_is_supported:
    #         return possible_model

    # # let's use a random but different model each day.
    # key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
    # o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
    # return o.choice(model_choices)[1]

title_text="HuggingFace's missing inference widget"
css = """
.logo-mark { fill: #ffe184; }

/* from https://github.com/gradio-app/gradio/issues/4001
 * necessary as putting ChatInterface in gr.Blocks changes behaviour
 */

.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""
with gr.Blocks(title_text, css=css) as demo:
    gr.HTML("""
        <h1 align="center">HuggingFace's missing inference widget</h1>
        <h2 align="center">
            Please select your model from the list 👇
        </h2>
    """)

    # hidden_state = gr.State(value=initial_model)
    with gr.Row():
        model_selector = gr.Dropdown(
            label="Select your Model",
            choices=build_model_choices(),
            value=initial_model,
            # value=hidden_state,
            scale=4
        )
        gr.Button(
            value="Visit Model Card ↗️",
            scale=1
        ).click(
            inputs=[model_selector],
            js="(model_selection) => { window.open(`https://huggingface.co/${model_selection}`, '_blank') }",
            fn=None,
        )

    gr.ChatInterface(
        respond,
        additional_inputs=[model_selector],
        head=""",
        <script>console.log("Hello from gradio!")</script>
        """,
        concurrency_limit=5
    )
    gr.HTML(f"""
        <p align="center">
            Inference by <a href="https://featherless.ai">{logo}</a>
        </p>
    """)
    def update_initial_model_choice(request: gr.Request):
        return initial_model(request.headers.get('referer'))

    demo.load(update_initial_model_choice, outputs=model_selector)

demo.launch()