Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
class TrainWrapperBaseClass(): | |
def __init__(self, args, config) -> None: | |
self.init_optimizer() | |
def init_optimizer(self) -> None: | |
print('using Adam') | |
self.generator_optimizer = optim.Adam( | |
self.generator.parameters(), | |
lr = self.config.Train.learning_rate.generator_learning_rate, | |
betas=[0.9, 0.999] | |
) | |
if self.discriminator is not None: | |
self.discriminator_optimizer = optim.Adam( | |
self.discriminator.parameters(), | |
lr = self.config.Train.learning_rate.discriminator_learning_rate, | |
betas=[0.9, 0.999] | |
) | |
def __call__(self, bat): | |
raise NotImplementedError | |
def get_loss(self, **kwargs): | |
raise NotImplementedError | |
def state_dict(self): | |
model_state = { | |
'generator': self.generator.state_dict(), | |
'generator_optim': self.generator_optimizer.state_dict(), | |
'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None, | |
'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None | |
} | |
return model_state | |
def parameters(self): | |
return self.generator.parameters() | |
def load_state_dict(self, state_dict): | |
if 'generator' in state_dict: | |
self.generator.load_state_dict(state_dict['generator']) | |
else: | |
self.generator.load_state_dict(state_dict) | |
if 'generator_optim' in state_dict and self.generator_optimizer is not None: | |
self.generator_optimizer.load_state_dict(state_dict['generator_optim']) | |
if self.discriminator is not None: | |
self.discriminator.load_state_dict(state_dict['discriminator']) | |
if 'discriminator_optim' in state_dict and self.discriminator_optimizer is not None: | |
self.discriminator_optimizer.load_state_dict(state_dict['discriminator_optim']) | |
def infer_on_audio(self, aud_fn, initial_pose=None, norm_stats=None, **kwargs): | |
raise NotImplementedError | |
def init_params(self): | |
if self.config.Data.pose.convert_to_6d: | |
scale = 2 | |
else: | |
scale = 1 | |
global_orient = round(0 * scale) | |
leye_pose = reye_pose = round(0 * scale) | |
jaw_pose = round(0 * scale) | |
body_pose = round((63 - 24) * scale) | |
left_hand_pose = right_hand_pose = round(45 * scale) | |
if self.expression: | |
expression = 100 | |
else: | |
expression = 0 | |
b_j = 0 | |
jaw_dim = jaw_pose | |
b_e = b_j + jaw_dim | |
eye_dim = leye_pose + reye_pose | |
b_b = b_e + eye_dim | |
body_dim = global_orient + body_pose | |
b_h = b_b + body_dim | |
hand_dim = left_hand_pose + right_hand_pose | |
b_f = b_h + hand_dim | |
face_dim = expression | |
self.dim_list = [b_j, b_e, b_b, b_h, b_f] | |
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim | |
self.pose = int(self.full_dim / round(3 * scale)) | |
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim] |