Spaces:
Build error
Build error
import os | |
import sys | |
from torch.optim.lr_scheduler import StepLR | |
sys.path.append(os.getcwd()) | |
from nets.layers import * | |
from nets.base import TrainWrapperBaseClass | |
from nets.spg.s2glayers import Generator as G_S2G, Discriminator as D_S2G | |
from nets.spg.vqvae_1d import VQVAE as s2g_body | |
from nets.utils import parse_audio, denormalize | |
from data_utils import get_mfcc, get_melspec, get_mfcc_old, get_mfcc_psf, get_mfcc_psf_min, get_mfcc_ta | |
import numpy as np | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from sklearn.preprocessing import normalize | |
from data_utils.lower_body import c_index, c_index_3d, c_index_6d | |
class TrainWrapper(TrainWrapperBaseClass): | |
''' | |
a wrapper receving a batch from data_utils and calculate loss | |
''' | |
def __init__(self, args, config): | |
self.args = args | |
self.config = config | |
self.device = torch.device(self.args.gpu) | |
self.global_step = 0 | |
self.convert_to_6d = self.config.Data.pose.convert_to_6d | |
self.expression = self.config.Data.pose.expression | |
self.epoch = 0 | |
self.init_params() | |
self.num_classes = 4 | |
self.composition = self.config.Model.composition | |
if self.composition: | |
self.g_body = s2g_body(self.each_dim[1], embedding_dim=64, num_embeddings=config.Model.code_num, num_hiddens=1024, | |
num_residual_layers=2, num_residual_hiddens=512).to(self.device) | |
self.g_hand = s2g_body(self.each_dim[2], embedding_dim=64, num_embeddings=config.Model.code_num, num_hiddens=1024, | |
num_residual_layers=2, num_residual_hiddens=512).to(self.device) | |
else: | |
self.g = s2g_body(self.each_dim[1] + self.each_dim[2], embedding_dim=64, num_embeddings=config.Model.code_num, | |
num_hiddens=1024, num_residual_layers=2, num_residual_hiddens=512).to(self.device) | |
self.discriminator = None | |
if self.convert_to_6d: | |
self.c_index = c_index_6d | |
else: | |
self.c_index = c_index_3d | |
super().__init__(args, config) | |
def init_optimizer(self): | |
print('using Adam') | |
if self.composition: | |
self.g_body_optimizer = optim.Adam( | |
self.g_body.parameters(), | |
lr=self.config.Train.learning_rate.generator_learning_rate, | |
betas=[0.9, 0.999] | |
) | |
self.g_hand_optimizer = optim.Adam( | |
self.g_hand.parameters(), | |
lr=self.config.Train.learning_rate.generator_learning_rate, | |
betas=[0.9, 0.999] | |
) | |
else: | |
self.g_optimizer = optim.Adam( | |
self.g.parameters(), | |
lr=self.config.Train.learning_rate.generator_learning_rate, | |
betas=[0.9, 0.999] | |
) | |
def state_dict(self): | |
if self.composition: | |
model_state = { | |
'g_body': self.g_body.state_dict(), | |
'g_body_optim': self.g_body_optimizer.state_dict(), | |
'g_hand': self.g_hand.state_dict(), | |
'g_hand_optim': self.g_hand_optimizer.state_dict(), | |
'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None, | |
'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None | |
} | |
else: | |
model_state = { | |
'g': self.g.state_dict(), | |
'g_optim': self.g_optimizer.state_dict(), | |
'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None, | |
'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None | |
} | |
return model_state | |
def init_params(self): | |
if self.config.Data.pose.convert_to_6d: | |
scale = 2 | |
else: | |
scale = 1 | |
global_orient = round(0 * scale) | |
leye_pose = reye_pose = round(0 * scale) | |
jaw_pose = round(0 * scale) | |
body_pose = round((63 - 24) * scale) | |
left_hand_pose = right_hand_pose = round(45 * scale) | |
if self.expression: | |
expression = 100 | |
else: | |
expression = 0 | |
b_j = 0 | |
jaw_dim = jaw_pose | |
b_e = b_j + jaw_dim | |
eye_dim = leye_pose + reye_pose | |
b_b = b_e + eye_dim | |
body_dim = global_orient + body_pose | |
b_h = b_b + body_dim | |
hand_dim = left_hand_pose + right_hand_pose | |
b_f = b_h + hand_dim | |
face_dim = expression | |
self.dim_list = [b_j, b_e, b_b, b_h, b_f] | |
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim | |
self.pose = int(self.full_dim / round(3 * scale)) | |
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim] | |
def __call__(self, bat): | |
# assert (not self.args.infer), "infer mode" | |
self.global_step += 1 | |
total_loss = None | |
loss_dict = {} | |
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32) | |
# id = bat['speaker'].to(self.device) - 20 | |
# id = F.one_hot(id, self.num_classes) | |
poses = poses[:, self.c_index, :] | |
gt_poses = poses.permute(0, 2, 1) | |
b_poses = gt_poses[..., :self.each_dim[1]] | |
h_poses = gt_poses[..., self.each_dim[1]:] | |
if self.composition: | |
loss = 0 | |
loss_dict, loss = self.vq_train(b_poses[:, :], 'b', self.g_body, loss_dict, loss) | |
loss_dict, loss = self.vq_train(h_poses[:, :], 'h', self.g_hand, loss_dict, loss) | |
else: | |
loss = 0 | |
loss_dict, loss = self.vq_train(gt_poses[:, :], 'g', self.g, loss_dict, loss) | |
return total_loss, loss_dict | |
def vq_train(self, gt, name, model, dict, total_loss, pre=None): | |
e_q_loss, x_recon = model(gt_poses=gt, pre_state=pre) | |
loss, loss_dict = self.get_loss(pred_poses=x_recon, gt_poses=gt, e_q_loss=e_q_loss, pre=pre) | |
# total_loss = total_loss + loss | |
if name == 'b': | |
optimizer_name = 'g_body_optimizer' | |
elif name == 'h': | |
optimizer_name = 'g_hand_optimizer' | |
elif name == 'g': | |
optimizer_name = 'g_optimizer' | |
else: | |
raise ValueError("model's name must be b or h") | |
optimizer = getattr(self, optimizer_name) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
for key in list(loss_dict.keys()): | |
dict[name + key] = loss_dict.get(key, 0).item() | |
return dict, total_loss | |
def get_loss(self, | |
pred_poses, | |
gt_poses, | |
e_q_loss, | |
pre=None | |
): | |
loss_dict = {} | |
rec_loss = torch.mean(torch.abs(pred_poses - gt_poses)) | |
v_pr = pred_poses[:, 1:] - pred_poses[:, :-1] | |
v_gt = gt_poses[:, 1:] - gt_poses[:, :-1] | |
velocity_loss = torch.mean(torch.abs(v_pr - v_gt)) | |
if pre is None: | |
f0_vel = 0 | |
else: | |
v0_pr = pred_poses[:, 0] - pre[:, -1] | |
v0_gt = gt_poses[:, 0] - pre[:, -1] | |
f0_vel = torch.mean(torch.abs(v0_pr - v0_gt)) | |
gen_loss = rec_loss + e_q_loss + velocity_loss + f0_vel | |
loss_dict['rec_loss'] = rec_loss | |
loss_dict['velocity_loss'] = velocity_loss | |
# loss_dict['e_q_loss'] = e_q_loss | |
if pre is not None: | |
loss_dict['f0_vel'] = f0_vel | |
return gen_loss, loss_dict | |
def infer_on_audio(self, aud_fn, initial_pose=None, norm_stats=None, exp=None, var=None, w_pre=False, continuity=False, | |
id=None, fps=15, sr=22000, smooth=False, **kwargs): | |
''' | |
initial_pose: (B, C, T), normalized | |
(aud_fn, txgfile) -> generated motion (B, T, C) | |
''' | |
output = [] | |
assert self.args.infer, "train mode" | |
if self.composition: | |
self.g_body.eval() | |
self.g_hand.eval() | |
else: | |
self.g.eval() | |
if self.config.Data.pose.normalization: | |
assert norm_stats is not None | |
data_mean = norm_stats[0] | |
data_std = norm_stats[1] | |
# assert initial_pose.shape[-1] == pre_length | |
if initial_pose is not None: | |
gt = initial_pose[:, :, :].to(self.device).to(torch.float32) | |
pre_poses = initial_pose[:, :, :15].permute(0, 2, 1).to(self.device).to(torch.float32) | |
poses = initial_pose.permute(0, 2, 1).to(self.device).to(torch.float32) | |
B = pre_poses.shape[0] | |
else: | |
gt = None | |
pre_poses = None | |
B = 1 | |
if type(aud_fn) == torch.Tensor: | |
aud_feat = torch.tensor(aud_fn, dtype=torch.float32).to(self.device) | |
num_poses_to_generate = aud_feat.shape[-1] | |
else: | |
aud_feat = get_mfcc_ta(aud_fn, sr=sr, fps=fps, smlpx=True, type='mfcc').transpose(1, 0) | |
aud_feat = aud_feat[:, :] | |
num_poses_to_generate = aud_feat.shape[-1] | |
aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0) | |
aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.device) | |
# pre_poses = torch.randn(pre_poses.shape).to(self.device).to(torch.float32) | |
if id is None: | |
id = F.one_hot(torch.tensor([[0]]), self.num_classes).to(self.device) | |
with torch.no_grad(): | |
aud_feat = aud_feat.permute(0, 2, 1) | |
gt_poses = gt[:, self.c_index].permute(0, 2, 1) | |
if self.composition: | |
if continuity: | |
pred_poses_body = [] | |
pred_poses_hand = [] | |
pre_b = None | |
pre_h = None | |
for i in range(5): | |
_, pred_body = self.g_body(gt_poses=gt_poses[:, i*60:(i+1)*60, :self.each_dim[1]], pre_state=pre_b) | |
pre_b = pred_body[..., -1:].transpose(1,2) | |
pred_poses_body.append(pred_body) | |
_, pred_hand = self.g_hand(gt_poses=gt_poses[:, i*60:(i+1)*60, self.each_dim[1]:], pre_state=pre_h) | |
pre_h = pred_hand[..., -1:].transpose(1,2) | |
pred_poses_hand.append(pred_hand) | |
pred_poses_body = torch.cat(pred_poses_body, dim=2) | |
pred_poses_hand = torch.cat(pred_poses_hand, dim=2) | |
else: | |
_, pred_poses_body = self.g_body(gt_poses=gt_poses[..., :self.each_dim[1]], id=id) | |
_, pred_poses_hand = self.g_hand(gt_poses=gt_poses[..., self.each_dim[1]:], id=id) | |
pred_poses = torch.cat([pred_poses_body, pred_poses_hand], dim=1) | |
else: | |
_, pred_poses = self.g(gt_poses=gt_poses, id=id) | |
pred_poses = pred_poses.transpose(1, 2).cpu().numpy() | |
output = pred_poses | |
if self.config.Data.pose.normalization: | |
output = denormalize(output, data_mean, data_std) | |
if smooth: | |
lamda = 0.8 | |
smooth_f = 10 | |
frame = 149 | |
for i in range(smooth_f): | |
f = frame + i | |
l = lamda * (i + 1) / smooth_f | |
output[0, f] = (1 - l) * output[0, f - 1] + l * output[0, f] | |
output = np.concatenate(output, axis=1) | |
return output | |
def load_state_dict(self, state_dict): | |
if self.composition: | |
self.g_body.load_state_dict(state_dict['g_body']) | |
self.g_hand.load_state_dict(state_dict['g_hand']) | |
else: | |
self.g.load_state_dict(state_dict['g']) | |