Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def weights_init(m): | |
classname = m.__class__.__name__ | |
if classname.find('Conv') != -1: | |
try: | |
nn.init.xavier_uniform_(m.weight.data) | |
m.bias.data.fill_(0) | |
except AttributeError: | |
print("Skipping initialization of ", classname) | |
class GatedActivation(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
x, y = x.chunk(2, dim=1) | |
return F.tanh(x) * F.sigmoid(y) | |
class GatedMaskedConv2d(nn.Module): | |
def __init__(self, mask_type, dim, kernel, residual=True, n_classes=10, bh_model=False): | |
super().__init__() | |
assert kernel % 2 == 1, print("Kernel size must be odd") | |
self.mask_type = mask_type | |
self.residual = residual | |
self.bh_model = bh_model | |
self.class_cond_embedding = nn.Embedding( | |
n_classes, 2 * dim | |
) | |
kernel_shp = (kernel // 2 + 1, 3 if self.bh_model else 1) # (ceil(n/2), n) | |
padding_shp = (kernel // 2, 1 if self.bh_model else 0) | |
self.vert_stack = nn.Conv2d( | |
dim, dim * 2, | |
kernel_shp, 1, padding_shp | |
) | |
self.vert_to_horiz = nn.Conv2d(2 * dim, 2 * dim, 1) | |
kernel_shp = (1, 2) | |
padding_shp = (0, 1) | |
self.horiz_stack = nn.Conv2d( | |
dim, dim * 2, | |
kernel_shp, 1, padding_shp | |
) | |
self.horiz_resid = nn.Conv2d(dim, dim, 1) | |
self.gate = GatedActivation() | |
def make_causal(self): | |
self.vert_stack.weight.data[:, :, -1].zero_() # Mask final row | |
self.horiz_stack.weight.data[:, :, :, -1].zero_() # Mask final column | |
def forward(self, x_v, x_h, h): | |
if self.mask_type == 'A': | |
self.make_causal() | |
h = self.class_cond_embedding(h) | |
h_vert = self.vert_stack(x_v) | |
h_vert = h_vert[:, :, :x_v.size(-2), :] | |
out_v = self.gate(h_vert + h[:, :, None, None]) | |
if self.bh_model: | |
h_horiz = self.horiz_stack(x_h) | |
h_horiz = h_horiz[:, :, :, :x_h.size(-1)] | |
v2h = self.vert_to_horiz(h_vert) | |
out = self.gate(v2h + h_horiz + h[:, :, None, None]) | |
if self.residual: | |
out_h = self.horiz_resid(out) + x_h | |
else: | |
out_h = self.horiz_resid(out) | |
else: | |
if self.residual: | |
out_v = self.horiz_resid(out_v) + x_v | |
else: | |
out_v = self.horiz_resid(out_v) | |
out_h = out_v | |
return out_v, out_h | |
class GatedPixelCNN(nn.Module): | |
def __init__(self, input_dim=256, dim=64, n_layers=15, n_classes=10, audio=False, bh_model=False): | |
super().__init__() | |
self.dim = dim | |
self.audio = audio | |
self.bh_model = bh_model | |
if self.audio: | |
self.embedding_aud = nn.Conv2d(256, dim, 1, 1, padding=0) | |
self.fusion_v = nn.Conv2d(dim * 2, dim, 1, 1, padding=0) | |
self.fusion_h = nn.Conv2d(dim * 2, dim, 1, 1, padding=0) | |
# Create embedding layer to embed input | |
self.embedding = nn.Embedding(input_dim, dim) | |
# Building the PixelCNN layer by layer | |
self.layers = nn.ModuleList() | |
# Initial block with Mask-A convolution | |
# Rest with Mask-B convolutions | |
for i in range(n_layers): | |
mask_type = 'A' if i == 0 else 'B' | |
kernel = 7 if i == 0 else 3 | |
residual = False if i == 0 else True | |
self.layers.append( | |
GatedMaskedConv2d(mask_type, dim, kernel, residual, n_classes, bh_model) | |
) | |
# Add the output layer | |
self.output_conv = nn.Sequential( | |
nn.Conv2d(dim, 512, 1), | |
nn.ReLU(True), | |
nn.Conv2d(512, input_dim, 1) | |
) | |
self.apply(weights_init) | |
self.dp = nn.Dropout(0.1) | |
def forward(self, x, label, aud=None): | |
shp = x.size() + (-1,) | |
x = self.embedding(x.view(-1)).view(shp) # (B, H, W, C) | |
x = x.permute(0, 3, 1, 2) # (B, C, W, W) | |
x_v, x_h = (x, x) | |
for i, layer in enumerate(self.layers): | |
if i == 1 and self.audio is True: | |
aud = self.embedding_aud(aud) | |
a = torch.ones(aud.shape[-2]).to(aud.device) | |
a = self.dp(a) | |
aud = (aud.transpose(-1, -2) * a).transpose(-1, -2) | |
x_v = self.fusion_v(torch.cat([x_v, aud], dim=1)) | |
if self.bh_model: | |
x_h = self.fusion_h(torch.cat([x_h, aud], dim=1)) | |
x_v, x_h = layer(x_v, x_h, label) | |
if self.bh_model: | |
return self.output_conv(x_h) | |
else: | |
return self.output_conv(x_v) | |
def generate(self, label, shape=(8, 8), batch_size=64, aud_feat=None, pre_latents=None, pre_audio=None): | |
param = next(self.parameters()) | |
x = torch.zeros( | |
(batch_size, *shape), | |
dtype=torch.int64, device=param.device | |
) | |
if pre_latents is not None: | |
x = torch.cat([pre_latents, x], dim=1) | |
aud_feat = torch.cat([pre_audio, aud_feat], dim=2) | |
h0 = pre_latents.shape[1] | |
h = h0 + shape[0] | |
else: | |
h0 = 0 | |
h = shape[0] | |
for i in range(h0, h): | |
for j in range(shape[1]): | |
if self.audio: | |
logits = self.forward(x, label, aud_feat) | |
else: | |
logits = self.forward(x, label) | |
probs = F.softmax(logits[:, :, i, j], -1) | |
x.data[:, i, j].copy_( | |
probs.multinomial(1).squeeze().data | |
) | |
return x[:, h0:h] | |