Spaces:
Build error
Build error
import os | |
import sys | |
os.environ['CUDA_VISIBLE_DEVICES'] = '3' | |
sys.path.append(os.getcwd()) | |
from tqdm import tqdm | |
from transformers import Wav2Vec2Processor | |
from evaluation.FGD import EmbeddingSpaceEvaluator | |
from evaluation.metrics import LVD | |
import numpy as np | |
import smplx as smpl | |
from data_utils.lower_body import part2full, poses2pred | |
from data_utils.utils import get_mfcc_ta | |
from nets import * | |
from nets.utils import get_path, get_dpath | |
from trainer.options import parse_args | |
from data_utils import torch_data | |
from trainer.config import load_JsonConfig | |
import torch | |
from torch.utils import data | |
from data_utils.get_j import to3d, get_joints | |
def init_model(model_name, model_path, args, config): | |
if model_name == 's2g_face': | |
generator = s2g_face( | |
args, | |
config, | |
) | |
elif model_name == 's2g_body_vq': | |
generator = s2g_body_vq( | |
args, | |
config, | |
) | |
elif model_name == 's2g_body_pixel': | |
generator = s2g_body_pixel( | |
args, | |
config, | |
) | |
elif model_name == 's2g_body_ae': | |
generator = s2g_body_ae( | |
args, | |
config, | |
) | |
elif model_name == 's2g_LS3DCG': | |
generator = LS3DCG( | |
args, | |
config, | |
) | |
else: | |
raise NotImplementedError | |
print(model_path) | |
model_ckpt = torch.load(model_path, map_location=torch.device('cpu')) | |
generator.load_state_dict(model_ckpt['generator']) | |
return generator | |
def init_dataloader(data_root, speakers, args, config): | |
data_base = torch_data( | |
data_root=data_root, | |
speakers=speakers, | |
split='test', | |
limbscaling=False, | |
normalization=config.Data.pose.normalization, | |
norm_method=config.Data.pose.norm_method, | |
split_trans_zero=False, | |
num_pre_frames=config.Data.pose.pre_pose_length, | |
num_generate_length=config.Data.pose.generate_length, | |
num_frames=30, | |
aud_feat_win_size=config.Data.aud.aud_feat_win_size, | |
aud_feat_dim=config.Data.aud.aud_feat_dim, | |
feat_method=config.Data.aud.feat_method, | |
smplx=True, | |
audio_sr=22000, | |
convert_to_6d=config.Data.pose.convert_to_6d, | |
expression=config.Data.pose.expression, | |
config=config | |
) | |
if config.Data.pose.normalization: | |
norm_stats_fn = os.path.join(os.path.dirname(args.model_path), "norm_stats.npy") | |
norm_stats = np.load(norm_stats_fn, allow_pickle=True) | |
data_base.data_mean = norm_stats[0] | |
data_base.data_std = norm_stats[1] | |
else: | |
norm_stats = None | |
data_base.get_dataset() | |
test_set = data_base.all_dataset | |
test_loader = data.DataLoader(test_set, batch_size=1, shuffle=False) | |
return test_set, test_loader, norm_stats | |
def body_loss(gt, prs): | |
loss_dict = {} | |
# LVD | |
v_diff = LVD(gt[:, :22, :], prs[:, :, :22, :], symmetrical=False, weight=False) | |
loss_dict['LVD'] = v_diff | |
# Accuracy | |
error = (gt - prs).norm(p=2, dim=-1).sum(dim=-1).mean() | |
loss_dict['error'] = error | |
# Diversity | |
var = prs.var(dim=0).norm(p=2, dim=-1).sum(dim=-1).mean() | |
loss_dict['diverse'] = var | |
return loss_dict | |
def test(test_loader, generator, FGD_handler, smplx_model, config): | |
print('start testing') | |
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme") | |
am_sr = 16000 | |
loss_dict = {} | |
B = 2 | |
with torch.no_grad(): | |
count = 0 | |
for bat in tqdm(test_loader, desc="Testing......"): | |
count = count + 1 | |
# if count == 10: | |
# break | |
_, poses, exp = bat['aud_feat'].to('cuda').to(torch.float32), bat['poses'].to('cuda').to(torch.float32), \ | |
bat['expression'].to('cuda').to(torch.float32) | |
id = bat['speaker'].to('cuda') - 20 | |
betas = bat['betas'][0].to('cuda').to(torch.float64) | |
poses = torch.cat([poses, exp], dim=-2).transpose(-1, -2) | |
cur_wav_file = bat['aud_file'][0] | |
zero_face = torch.zeros([B, poses.shape[1], 103], device='cuda') | |
joints_list = [] | |
pred = generator.infer_on_audio(cur_wav_file, | |
id=id, | |
fps=30, | |
B=B, | |
am=am, | |
am_sr=am_sr, | |
frame=poses.shape[0] | |
) | |
pred = torch.tensor(pred, device='cuda') | |
FGD_handler.push_samples(pred, poses) | |
poses = poses.squeeze() | |
poses = to3d(poses, config) | |
if pred.shape[2] > 129: | |
pred = pred[:, :, 103:] | |
pred = torch.cat([zero_face[:, :pred.shape[1], :3], pred, zero_face[:, :pred.shape[1], 3:]], dim=-1) | |
full_pred = [] | |
for j in range(B): | |
f_pred = part2full(pred[j]) | |
full_pred.append(f_pred) | |
for i in range(full_pred.__len__()): | |
full_pred[i] = full_pred[i].unsqueeze(dim=0) | |
full_pred = torch.cat(full_pred, dim=0) | |
pred_joints = get_joints(smplx_model, betas, full_pred) | |
poses = poses2pred(poses) | |
poses = torch.cat([zero_face[0, :, :3], poses[:, 3:165], zero_face[0, :, 3:]], dim=-1) | |
gt_joints = get_joints(smplx_model, betas, poses[:pred_joints.shape[1]]) | |
FGD_handler.push_joints(pred_joints, gt_joints) | |
aud = get_mfcc_ta(cur_wav_file, fps=30, sr=16000, am='not None', encoder_choice='onset') | |
FGD_handler.push_aud(torch.from_numpy(aud)) | |
bat_loss_dict = body_loss(gt_joints, pred_joints) | |
if loss_dict: # 非空 | |
for key in list(bat_loss_dict.keys()): | |
loss_dict[key] += bat_loss_dict[key] | |
else: | |
for key in list(bat_loss_dict.keys()): | |
loss_dict[key] = bat_loss_dict[key] | |
for key in loss_dict.keys(): | |
loss_dict[key] = loss_dict[key] / count | |
print(key + '=' + str(loss_dict[key].item())) | |
# MAAC = FGD_handler.get_MAAC() | |
# print(MAAC) | |
fgd_dist, feat_dist = FGD_handler.get_scores() | |
print('fgd_dist=', fgd_dist.item()) | |
print('feat_dist=', feat_dist.item()) | |
BCscore = FGD_handler.get_BCscore() | |
print('Beat consistency score=', BCscore) | |
def main(): | |
parser = parse_args() | |
args = parser.parse_args() | |
device = torch.device(args.gpu) | |
torch.cuda.set_device(device) | |
config = load_JsonConfig(args.config_file) | |
os.environ['smplx_npz_path'] = config.smplx_npz_path | |
os.environ['extra_joint_path'] = config.extra_joint_path | |
os.environ['j14_regressor_path'] = config.j14_regressor_path | |
print('init dataloader...') | |
test_set, test_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config) | |
print('init model...') | |
model_name = args.body_model_name | |
# model_path = get_path(model_name, model_type) | |
model_path = args.body_model_path | |
generator = init_model(model_name, model_path, args, config) | |
ae = init_model('s2g_body_ae', './experiments/feature_extractor.pth', args, | |
config) | |
FGD_handler = EmbeddingSpaceEvaluator(ae, None, 'cuda') | |
print('init smlpx model...') | |
dtype = torch.float64 | |
smplx_path = './visualise/' | |
model_params = dict(model_path=smplx_path, | |
model_type='smplx', | |
create_global_orient=True, | |
create_body_pose=True, | |
create_betas=True, | |
num_betas=300, | |
create_left_hand_pose=True, | |
create_right_hand_pose=True, | |
use_pca=False, | |
flat_hand_mean=False, | |
create_expression=True, | |
num_expression_coeffs=100, | |
num_pca_comps=12, | |
create_jaw_pose=True, | |
create_leye_pose=True, | |
create_reye_pose=True, | |
create_transl=False, | |
dtype=dtype, ) | |
smplx_model = smpl.create(**model_params).to('cuda') | |
test(test_loader, generator, FGD_handler, smplx_model, config) | |
if __name__ == '__main__': | |
main() | |