''' LVD: different initial pose diversity: same initial pose ''' import os import sys sys.path.append(os.getcwd()) from glob import glob from argparse import ArgumentParser import json from evaluation.util import * from evaluation.metrics import * from tqdm import tqdm parser = ArgumentParser() parser.add_argument('--speaker', required=True, type=str) parser.add_argument('--post_fix', nargs='+', default=['base'], type=str) args = parser.parse_args() speaker = args.speaker test_audios = sorted(glob('pose_dataset/videos/test_audios/%s/*.wav'%(speaker))) LVD_list = [] diversity_list = [] for aud in tqdm(test_audios): base_name = os.path.splitext(aud)[0] gt_path = get_full_path(aud, speaker, 'val') _, gt_poses, _ = get_gts(gt_path) gt_poses = gt_poses[np.newaxis,...] # print(gt_poses.shape)#(seq_len, 135*2)pose, lhand, rhand, face for post_fix in args.post_fix: pred_path = base_name + '_'+post_fix+'.json' pred_poses = np.array(json.load(open(pred_path))) # print(pred_poses.shape)#(B, seq_len, 108) pred_poses = cvt25(pred_poses, gt_poses) # print(pred_poses.shape)#(B, seq, pose_dim) gt_valid_points = hand_points(gt_poses) pred_valid_points = hand_points(pred_poses) lvd = LVD(gt_valid_points, pred_valid_points) # div = diversity(pred_valid_points) LVD_list.append(lvd) # diversity_list.append(div) # gt_velocity = peak_velocity(gt_valid_points, order=2) # pred_velocity = peak_velocity(pred_valid_points, order=2) # gt_consistency = velocity_consistency(gt_velocity, pred_velocity) # pred_consistency = velocity_consistency(pred_velocity, gt_velocity) # gt_consistency_list.append(gt_consistency) # pred_consistency_list.append(pred_consistency) lvd = np.mean(LVD_list) # diversity_list = np.mean(diversity_list) print('LVD:', lvd) # print("diversity:", diversity_list)