''' Warning: metrics are for reference only, may have limited significance ''' import os import sys sys.path.append(os.getcwd()) import numpy as np import torch from data_utils.lower_body import rearrange, symmetry import torch.nn.functional as F def data_driven_baselines(gt_kps): ''' gt_kps: T, D ''' gt_velocity = np.abs(gt_kps[1:] - gt_kps[:-1]) mean= np.mean(gt_velocity, axis=0)[np.newaxis] #(1, D) mean = np.mean(np.abs(gt_velocity-mean)) last_step = gt_kps[1] - gt_kps[0] last_step = last_step[np.newaxis] #(1, D) last_step = np.mean(np.abs(gt_velocity-last_step)) return last_step, mean def Batch_LVD(gt_kps, pr_kps, symmetrical, weight): if gt_kps.shape[0] > pr_kps.shape[1]: length = pr_kps.shape[1] else: length = gt_kps.shape[0] gt_kps = gt_kps[:length] pr_kps = pr_kps[:, :length] global symmetry symmetry = torch.tensor(symmetry).bool() if symmetrical: # rearrange for compute symmetric. ns means non-symmetrical joints, ys means symmetrical joints. gt_kps = gt_kps[:, rearrange] ns_gt_kps = gt_kps[:, ~symmetry] ys_gt_kps = gt_kps[:, symmetry] ys_gt_kps = ys_gt_kps.reshape(ys_gt_kps.shape[0], -1, 2, 3) ns_gt_velocity = (ns_gt_kps[1:] - ns_gt_kps[:-1]).norm(p=2, dim=-1) ys_gt_velocity = (ys_gt_kps[1:] - ys_gt_kps[:-1]).norm(p=2, dim=-1) left_gt_vel = ys_gt_velocity[:, :, 0].sum(dim=-1) right_gt_vel = ys_gt_velocity[:, :, 1].sum(dim=-1) move_side = torch.where(left_gt_vel>right_gt_vel, torch.ones(left_gt_vel.shape).cuda(), torch.zeros(left_gt_vel.shape).cuda()) ys_gt_velocity = torch.mul(ys_gt_velocity[:, :, 0].transpose(0,1), move_side) + torch.mul(ys_gt_velocity[:, :, 1].transpose(0,1), ~move_side.bool()) ys_gt_velocity = ys_gt_velocity.transpose(0,1) gt_velocity = torch.cat([ns_gt_velocity, ys_gt_velocity], dim=1) pr_kps = pr_kps[:, :, rearrange] ns_pr_kps = pr_kps[:, :, ~symmetry] ys_pr_kps = pr_kps[:, :, symmetry] ys_pr_kps = ys_pr_kps.reshape(ys_pr_kps.shape[0], ys_pr_kps.shape[1], -1, 2, 3) ns_pr_velocity = (ns_pr_kps[:, 1:] - ns_pr_kps[:, :-1]).norm(p=2, dim=-1) ys_pr_velocity = (ys_pr_kps[:, 1:] - ys_pr_kps[:, :-1]).norm(p=2, dim=-1) left_pr_vel = ys_pr_velocity[:, :, :, 0].sum(dim=-1) right_pr_vel = ys_pr_velocity[:, :, :, 1].sum(dim=-1) move_side = torch.where(left_pr_vel > right_pr_vel, torch.ones(left_pr_vel.shape).cuda(), torch.zeros(left_pr_vel.shape).cuda()) ys_pr_velocity = torch.mul(ys_pr_velocity[..., 0].permute(2, 0, 1), move_side) + torch.mul( ys_pr_velocity[..., 1].permute(2, 0, 1), ~move_side.long()) ys_pr_velocity = ys_pr_velocity.permute(1, 2, 0) pr_velocity = torch.cat([ns_pr_velocity, ys_pr_velocity], dim=2) else: gt_velocity = (gt_kps[1:] - gt_kps[:-1]).norm(p=2, dim=-1) pr_velocity = (pr_kps[:, 1:] - pr_kps[:, :-1]).norm(p=2, dim=-1) if weight: w = F.softmax(gt_velocity.sum(dim=1).normal_(), dim=0) else: w = 1 / gt_velocity.shape[0] v_diff = ((pr_velocity - gt_velocity).abs().sum(dim=-1) * w).sum(dim=-1).mean() return v_diff def LVD(gt_kps, pr_kps, symmetrical=False, weight=False): gt_kps = gt_kps.squeeze() pr_kps = pr_kps.squeeze() if len(pr_kps.shape) == 4: return Batch_LVD(gt_kps, pr_kps, symmetrical, weight) # length = np.minimum(gt_kps.shape[0], pr_kps.shape[0]) length = gt_kps.shape[0]-10 # gt_kps = gt_kps[25:length] # pr_kps = pr_kps[25:length] #(T, D) # if pr_kps.shape[0] < gt_kps.shape[0]: # pr_kps = np.pad(pr_kps, [[0, int(gt_kps.shape[0]-pr_kps.shape[0])], [0, 0]], mode='constant') gt_velocity = (gt_kps[1:] - gt_kps[:-1]).norm(p=2, dim=-1) pr_velocity = (pr_kps[1:] - pr_kps[:-1]).norm(p=2, dim=-1) return (pr_velocity-gt_velocity).abs().sum(dim=-1).mean() def diversity(kps): ''' kps: bs, seq, dim ''' dis_list = [] #the distance between each pair for i in range(kps.shape[0]): for j in range(i+1, kps.shape[0]): seq_i = kps[i] seq_j = kps[j] dis = np.mean(np.abs(seq_i - seq_j)) dis_list.append(dis) return np.mean(dis_list)