import os import sys sys.path.append(os.getcwd()) from glob import glob from argparse import ArgumentParser import json from evaluation.util import * from evaluation.metrics import * from tqdm import tqdm parser = ArgumentParser() parser.add_argument('--speaker', required=True, type=str) parser.add_argument('--post_fix', nargs='+', default=['paper_model'], type=str) args = parser.parse_args() speaker = args.speaker test_audios = sorted(glob('pose_dataset/videos/test_audios/%s/*.wav'%(speaker))) gt_consistency_list=[] pred_consistency_list=[] for aud in tqdm(test_audios): base_name = os.path.splitext(aud)[0] gt_path = get_full_path(aud, speaker, 'val') _, gt_poses, _ = get_gts(gt_path) gt_poses = gt_poses[np.newaxis,...] # print(gt_poses.shape)#(seq_len, 135*2)pose, lhand, rhand, face for post_fix in args.post_fix: pred_path = base_name + '_'+post_fix+'.json' pred_poses = np.array(json.load(open(pred_path))) # print(pred_poses.shape)#(B, seq_len, 108) pred_poses = cvt25(pred_poses, gt_poses) # print(pred_poses.shape)#(B, seq, pose_dim) gt_valid_points = hand_points(gt_poses) pred_valid_points = hand_points(pred_poses) gt_velocity = peak_velocity(gt_valid_points, order=2) pred_velocity = peak_velocity(pred_valid_points, order=2) gt_consistency = velocity_consistency(gt_velocity, pred_velocity) pred_consistency = velocity_consistency(pred_velocity, gt_velocity) gt_consistency_list.append(gt_consistency) pred_consistency_list.append(pred_consistency) gt_consistency_list = np.concatenate(gt_consistency_list) pred_consistency_list = np.concatenate(pred_consistency_list) print(gt_consistency_list.max(), gt_consistency_list.min()) print(pred_consistency_list.max(), pred_consistency_list.min()) print(np.mean(gt_consistency_list), np.mean(pred_consistency_list)) print(np.std(gt_consistency_list), np.std(pred_consistency_list)) draw_cdf(gt_consistency_list, save_name='%s_gt.jpg'%(speaker), color='slateblue') draw_cdf(pred_consistency_list, save_name='%s_pred.jpg'%(speaker), color='lightskyblue') to_excel(gt_consistency_list, '%s_gt.xlsx'%(speaker)) to_excel(pred_consistency_list, '%s_pred.xlsx'%(speaker)) np.save('%s_gt.npy'%(speaker), gt_consistency_list) np.save('%s_pred.npy'%(speaker), pred_consistency_list)