import torch import torch.nn as nn import torch.optim as optim class TrainWrapperBaseClass(): def __init__(self, args, config) -> None: self.init_optimizer() def init_optimizer(self) -> None: print('using Adam') self.generator_optimizer = optim.Adam( self.generator.parameters(), lr = self.config.Train.learning_rate.generator_learning_rate, betas=[0.9, 0.999] ) if self.discriminator is not None: self.discriminator_optimizer = optim.Adam( self.discriminator.parameters(), lr = self.config.Train.learning_rate.discriminator_learning_rate, betas=[0.9, 0.999] ) def __call__(self, bat): raise NotImplementedError def get_loss(self, **kwargs): raise NotImplementedError def state_dict(self): model_state = { 'generator': self.generator.state_dict(), 'generator_optim': self.generator_optimizer.state_dict(), 'discriminator': self.discriminator.state_dict() if self.discriminator is not None else None, 'discriminator_optim': self.discriminator_optimizer.state_dict() if self.discriminator is not None else None } return model_state def parameters(self): return self.generator.parameters() def load_state_dict(self, state_dict): if 'generator' in state_dict: self.generator.load_state_dict(state_dict['generator']) else: self.generator.load_state_dict(state_dict) if 'generator_optim' in state_dict and self.generator_optimizer is not None: self.generator_optimizer.load_state_dict(state_dict['generator_optim']) if self.discriminator is not None: self.discriminator.load_state_dict(state_dict['discriminator']) if 'discriminator_optim' in state_dict and self.discriminator_optimizer is not None: self.discriminator_optimizer.load_state_dict(state_dict['discriminator_optim']) def infer_on_audio(self, aud_fn, initial_pose=None, norm_stats=None, **kwargs): raise NotImplementedError def init_params(self): if self.config.Data.pose.convert_to_6d: scale = 2 else: scale = 1 global_orient = round(0 * scale) leye_pose = reye_pose = round(0 * scale) jaw_pose = round(0 * scale) body_pose = round((63 - 24) * scale) left_hand_pose = right_hand_pose = round(45 * scale) if self.expression: expression = 100 else: expression = 0 b_j = 0 jaw_dim = jaw_pose b_e = b_j + jaw_dim eye_dim = leye_pose + reye_pose b_b = b_e + eye_dim body_dim = global_orient + body_pose b_h = b_b + body_dim hand_dim = left_hand_pose + right_hand_pose b_f = b_h + hand_dim face_dim = expression self.dim_list = [b_j, b_e, b_b, b_h, b_f] self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim self.pose = int(self.full_dim / round(3 * scale)) self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim]