from __future__ import annotations import os import random import time import gradio as gr import numpy as np import PIL.Image import torch try: import intel_extension_for_pytorch as ipex except: pass from diffusers import DiffusionPipeline import torch import os import torch from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor import uuid DESCRIPTION = '''# Latent Consistency Model Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine-tune of [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with only 4,000 training iterations (~32 A100 GPU Hours). [Project page](https://latent-consistency-models.github.io) ''' if torch.cuda.is_available(): DESCRIPTION += "\n

Running on CUDA 😀

" elif hasattr(torch, 'xpu') and torch.xpu.is_available(): DESCRIPTION += "\n

Running on XPU 🤓

" else: DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" """ Operation System Options: If you are using MacOS, please set the following (device="mps") ; If you are using Linux & Windows with Nvidia GPU, please set the device="cuda"; If you are using Linux & Windows with Intel Arc GPU, please set the device="xpu"; """ # device = "mps" # MacOS #device = "xpu" # Intel Arc GPU device = "cuda" # Linux & Windows """ DTYPE Options: To reduce GPU memory you can set "DTYPE=torch.float16", but image quality might be compromised """ DTYPE = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse #pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7") pipe = DiffusionPipeline.from_pretrained("D:/git-work/LCM_Dreamshaper_v7") #pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main") pipe.to(torch_device=device, torch_dtype=DTYPE) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def save_image(img, profile: gr.OAuthProfile | None, metadata: dict, root_path='./'): unique_name = str(uuid.uuid4()) + '.png' unique_name = os.path.join(root_path, unique_name) img.save(unique_name) # gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata) return unique_name def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict): paths = [] root_path = './images/' os.makedirs(root_path, exist_ok=True) with ThreadPoolExecutor() as executor: paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array), [root_path]*len(image_array))) return paths def generate( prompt: str, seed: int = 0, width: int = 512, height: int = 512, guidance_scale: float = 8.0, num_inference_steps: int = 4, num_images: int = 4, randomize_seed: bool = False, param_dtype='torch.float16', progress = gr.Progress(track_tqdm=True), profile: gr.OAuthProfile | None = None, ) -> PIL.Image.Image: seed = randomize_seed_fn(seed, randomize_seed) torch.manual_seed(seed) pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32) start_time = time.time() result = pipe( prompt=prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images, lcm_origin_steps=50, output_type="pil", ).images paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps}) print(time.time() - start_time) return paths, seed examples = [ "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", ) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True ) randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) with gr.Row(): width = gr.Slider( label="Width", #minimum=256, minimum=128, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale for base", minimum=2, maximum=14, step=0.1, value=8.0, ) num_inference_steps = gr.Slider( label="Number of inference steps for base", minimum=1, maximum=8, step=1, value=4, ) with gr.Row(): num_images = gr.Slider( label="Number of images", minimum=1, maximum=8, step=1, value=1,#生成图片的数量 visible=True, ) dtype_choices = ['torch.float16','torch.float32'] param_dtype = gr.Radio(dtype_choices,label='torch.dtype', value=dtype_choices[0], interactive=True, info='To save GPU memory, use torch.float16. For better quality, use torch.float32.') # with gr.Accordion("Past generations", open=False): # gr_user_history.render() gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, seed, width, height, guidance_scale, num_inference_steps, num_images, randomize_seed, param_dtype ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(api_open=False) # demo.queue(max_size=20).launch() demo.launch(share=True) #demo.launch()