from langchain.embeddings.openai import OpenAIEmbeddings from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI from gradio import gradio as gr from langchain.chat_models import ChatOpenAI from langchain import PromptTemplate, LLMChain from langchain.llms import TextGen from langchain.cache import InMemoryCache from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) import time import langchain import os OPENAI_API_KEY=os.getenv('OPENAI_API_KEY') # 嵌入模型 #embeddings = OpenAIEmbeddings() embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en") # 加载数据 #docsearch = FAISS.from_texts(texts, embeddings) docsearch = FAISS.load_local("./faiss_index", embeddings) template="您是回答ANSYS软件使用查询的得力助手,所有回复必需用中文" chain = load_qa_chain(OpenAI(temperature=0,model_name="gpt-3.5-turbo"), chain_type="stuff",verbose=True) def predict(message, history): history_langchain_format = [] for human, ai in history: history_langchain_format.append(HumanMessage(content=human)) history_langchain_format.append(AIMessage(content=ai)) history_langchain_format.append(HumanMessage(content=message)) docs = docsearch.similarity_search(message) response = chain.run(input_documents=docs, question=message + template) partial_message = "" for chunk in response: if len(chunk[0]) != 0: time.sleep(0.1) partial_message = partial_message + chunk[0] yield partial_message langchain.llm_cache = InMemoryCache() gr.ChatInterface(predict, textbox=gr.Textbox(placeholder="请提问关于ANSYS软件的问题", container=False, scale=7), title="欢迎使用ANSYS软件AI机器人", examples=["你是谁?", "请介绍一下Fluent 软件", "create-bounding-box","ANSYS Fluent Architecture","ANSYS Fluent 的软件架构是怎么样的"], description='本AI助手为并行公司实验性产品,回答的内容由大模型推理,如回复的内容跟实际情况有偏差请理解').queue().launch(debug=True,auth=('paratera', 'paratera@2023'))