File size: 5,148 Bytes
8502051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import ModelMixin

from .warplayer import warp

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=True),        
        nn.PReLU(out_planes)
    )

def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=False),
        nn.BatchNorm2d(out_planes),
        nn.PReLU(out_planes)
    )

def convert(param):
        return {
            k.replace("module.", ""): v
            for k, v in param.items()
            if "module." in k
        }

class IFBlock(nn.Module):
    def __init__(self, in_planes, c=64):
        super(IFBlock, self).__init__()
        self.conv0 = nn.Sequential(
            conv(in_planes, c//2, 3, 2, 1),
            conv(c//2, c, 3, 2, 1),
            )
        self.convblock0 = nn.Sequential(
            conv(c, c),
            conv(c, c)
        )
        self.convblock1 = nn.Sequential(
            conv(c, c),
            conv(c, c)
        )
        self.convblock2 = nn.Sequential(
            conv(c, c),
            conv(c, c)
        )
        self.convblock3 = nn.Sequential(
            conv(c, c),
            conv(c, c)
        )
        self.conv1 = nn.Sequential(
            nn.ConvTranspose2d(c, c//2, 4, 2, 1),
            nn.PReLU(c//2),
            nn.ConvTranspose2d(c//2, 4, 4, 2, 1),
        )
        self.conv2 = nn.Sequential(
            nn.ConvTranspose2d(c, c//2, 4, 2, 1),
            nn.PReLU(c//2),
            nn.ConvTranspose2d(c//2, 1, 4, 2, 1),
        )

    def forward(self, x, flow, scale=1):
        x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
        flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 1. / scale
        feat = self.conv0(torch.cat((x, flow), 1))
        feat = self.convblock0(feat) + feat
        feat = self.convblock1(feat) + feat
        feat = self.convblock2(feat) + feat
        feat = self.convblock3(feat) + feat        
        flow = self.conv1(feat)
        mask = self.conv2(feat)
        flow = F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * scale
        mask = F.interpolate(mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
        return flow, mask
        
class IFNet(ModelMixin):
    def __init__(self, ckpt_path="checkpoints/flownet.pkl"):
        super(IFNet, self).__init__()
        self.block0 = IFBlock(7+4, c=90)
        self.block1 = IFBlock(7+4, c=90)
        self.block2 = IFBlock(7+4, c=90)
        self.block_tea = IFBlock(10+4, c=90)
        if ckpt_path is not None:
            self.load_state_dict(convert(torch.load(ckpt_path, map_location ='cpu')))
        
    def inference(self, img0, img1, scale=1.0):
        imgs = torch.cat((img0, img1), 1)
        scale_list = [4/scale, 2/scale, 1/scale]
        flow, mask, merged = self.forward(imgs, scale_list)
        return merged[2]

    def forward(self, x, scale_list=[4, 2, 1], training=False):
        if training == False:
            channel = x.shape[1] // 2
            img0 = x[:, :channel]
            img1 = x[:, channel:]
        flow_list = []
        merged = []
        mask_list = []
        warped_img0 = img0
        warped_img1 = img1
        flow = (x[:, :4]).detach() * 0
        mask = (x[:, :1]).detach() * 0
        loss_cons = 0
        block = [self.block0, self.block1, self.block2]
        for i in range(3):
            f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i])
            f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i])
            flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
            mask = mask + (m0 + (-m1)) / 2
            mask_list.append(mask)
            flow_list.append(flow)
            warped_img0 = warp(img0, flow[:, :2])
            warped_img1 = warp(img1, flow[:, 2:4])
            merged.append((warped_img0, warped_img1))
        '''
        c0 = self.contextnet(img0, flow[:, :2])
        c1 = self.contextnet(img1, flow[:, 2:4])
        tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
        res = tmp[:, 1:4] * 2 - 1
        '''
        for i in range(3):
            mask_list[i] = torch.sigmoid(mask_list[i])
            merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
            # merged[i] = torch.clamp(merged[i] + res, 0, 1)        
        return flow_list, mask_list[2], merged