Spaces:
Paused
Paused
import gradio | |
import os | |
import numpy as np | |
import argparse | |
import imageio | |
import torch | |
from einops import rearrange | |
from diffusers import DDIMScheduler, AutoencoderKL | |
from transformers import CLIPTextModel, CLIPTokenizer | |
# from annotator.canny import CannyDetector | |
# from annotator.openpose import OpenposeDetector | |
# from annotator.midas import MidasDetector | |
# import sys | |
# sys.path.insert(0, ".") | |
from huggingface_hub import hf_hub_download | |
import controlnet_aux | |
from controlnet_aux import OpenposeDetector, CannyDetector, MidasDetector | |
from controlnet_aux.open_pose.body import Body | |
from models.pipeline_controlvideo import ControlVideoPipeline | |
from models.util import save_videos_grid, read_video, get_annotation | |
from models.unet import UNet3DConditionModel | |
from models.controlnet import ControlNetModel3D | |
from models.RIFE.IFNet_HDv3 import IFNet | |
device = "cuda" | |
sd_path = "runwayml/stable-diffusion-v1-5" | |
inter_path = "checkpoints/flownet.pkl" | |
controlnet_dict = { | |
"pose": "lllyasviel/control_v11p_sd15_openpose", | |
"depth": "lllyasviel/control_v11p_sd15_canny", | |
"canny": "lllyasviel/control_v11f1p_sd15_depth", | |
} | |
controlnet_parser_dict = { | |
"pose": OpenposeDetector, | |
"depth": MidasDetector, | |
"canny": CannyDetector, | |
} | |
POS_PROMPT = " ,best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth" | |
NEG_PROMPT = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic" | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--prompt", type=str, required=True, help="Text description of target video") | |
parser.add_argument("--video_path", type=str, required=True, help="Path to a source video") | |
parser.add_argument("--output_path", type=str, default="./outputs", help="Directory of output") | |
parser.add_argument("--condition", type=str, default="depth", help="Condition of structure sequence") | |
parser.add_argument("--video_length", type=int, default=15, help="Length of synthesized video") | |
parser.add_argument("--height", type=int, default=512, help="Height of synthesized video, and should be a multiple of 32") | |
parser.add_argument("--width", type=int, default=512, help="Width of synthesized video, and should be a multiple of 32") | |
parser.add_argument("--smoother_steps", nargs='+', default=[19, 20], type=int, help="Timesteps at which using interleaved-frame smoother") | |
parser.add_argument("--is_long_video", action='store_true', help="Whether to use hierarchical sampler to produce long video") | |
parser.add_argument("--seed", type=int, default=42, help="Random seed of generator") | |
args = parser.parse_args() | |
return args | |
def infer(prompt, video_path, condition, video_length, is_long_video): | |
#args = get_args() | |
#os.makedirs(args.output_path, exist_ok=True) | |
# Height and width should be a multiple of 32 | |
output_path = "" | |
height, width = 512 | |
height = (height // 32) * 32 | |
width = (width // 32) * 32 | |
smoother_steps = [19, 20] | |
is_long_video = False | |
seed = 42 | |
if condition == "pose": | |
pretrained_model_or_path = "lllyasviel/ControlNet" | |
body_model_path = hf_hub_download(pretrained_model_or_path, "annotator/ckpts/body_pose_model.pth", cache_dir="checkpoints") | |
body_estimation = Body(body_model_path) | |
annotator = controlnet_parser_dict[condition](body_estimation) | |
else: | |
annotator = controlnet_parser_dict[condition]() | |
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16) | |
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16) | |
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[args.condition]).to(dtype=torch.float16) | |
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16) | |
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler") | |
pipe = ControlVideoPipeline( | |
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, | |
controlnet=controlnet, interpolater=interpolater, scheduler=scheduler, | |
) | |
pipe.enable_vae_slicing() | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.to(device) | |
generator = torch.Generator(device="cuda") | |
generator.manual_seed(seed) | |
# Step 1. Read a video | |
video = read_video(video_path=video_path, video_length=video_length, width=width, height=height) | |
# Save source video | |
original_pixels = rearrange(video, "(b f) c h w -> b c f h w", b=1) | |
save_videos_grid(original_pixels, os.path.join(output_path, "source_video.mp4"), rescale=True) | |
# Step 2. Parse a video to conditional frames | |
pil_annotation = get_annotation(video, annotator) | |
if condition == "depth" and controlnet_aux.__version__ == '0.0.1': | |
pil_annotation = [pil_annot[0] for pil_annot in pil_annotation] | |
# Save condition video | |
video_cond = [np.array(p).astype(np.uint8) for p in pil_annotation] | |
imageio.mimsave(os.path.join(output_path, f"{condition}_condition.mp4"), video_cond, fps=8) | |
# Reduce memory (optional) | |
del annotator; torch.cuda.empty_cache() | |
# Step 3. inference | |
if is_long_video: | |
window_size = int(np.sqrt(video_length)) | |
sample = pipe.generate_long_video(prompt + POS_PROMPT, video_length=video_length, frames=pil_annotation, | |
num_inference_steps=50, smooth_steps=args.smoother_steps, window_size=window_size, | |
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT, | |
width=width, height=height | |
).videos | |
else: | |
sample = pipe(prompt + POS_PROMPT, video_length=video_length, frames=pil_annotation, | |
num_inference_steps=50, smooth_steps=args.smoother_steps, | |
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT, | |
width=width, height=height | |
).videos | |
save_videos_grid(sample, f"{output_path}/{prompt}.mp4") | |
return f"{output_path}/{prompt}.mp4" | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
prompt = gr.Textbox(label="prompt") | |
video_path = gr.Video(source="upload", type="filepath") | |
condition = gr.Textbox(label="Condition", value="depth") | |
video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2) | |
seed = gr.Number(label="seed", valie=42) | |
submit_btn = gr.Button("Submit") | |
video_res = gr.Video(label="result") | |
submit_btn.click(fn=infer, | |
inputs=[prompt, | |
video_path, | |
condition, | |
video_length, | |
seed, | |
], | |
outputs=[video_res]) |