Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -87,7 +87,7 @@ def infer(prompt, video_path, condition, video_length, is_long_video):
|
|
87 |
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
|
88 |
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
|
89 |
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
|
90 |
-
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[
|
91 |
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
|
92 |
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
|
93 |
|
|
|
87 |
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
|
88 |
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
|
89 |
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
|
90 |
+
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[condition]).to(dtype=torch.float16)
|
91 |
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
|
92 |
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
|
93 |
|