import gradio as gr import os from huggingface_hub import snapshot_download model_ids = [ 'runwayml/stable-diffusion-v1-5', 'lllyasviel/sd-controlnet-depth', 'lllyasviel/sd-controlnet-canny', 'lllyasviel/sd-controlnet-openpose', ] for model_id in model_ids: model_name = model_id.split('/')[-1] snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') import subprocess def run_inference(prompt, video_path, condition, video_length): command = "python inference.py --prompt prompt --condition condition --video_path video_path --output_path 'outputs/' --video_length video_length --smoother_steps 19 20" output = subprocess.check_output(command, shell=True, text=True) output = output.strip() # Remove any leading/trailing whitespace # Process the output as needed print("Command output:", output) return "done" #return f"{output_path}/{prompt}.mp4" with gr.Blocks() as demo: with gr.Column(): prompt = gr.Textbox(label="prompt") video_path = gr.Video(source="upload", type="filepath") condition = gr.Textbox(label="Condition", value="depth") video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2) #seed = gr.Number(label="seed", value=42) submit_btn = gr.Button("Submit") #video_res = gr.Video(label="result") video_res = gr.Textbox(label="result") submit_btn.click(fn=run_inference, inputs=[prompt, video_path, condition, video_length ], outputs=[video_res]) demo.queue(max_size=12).launch()