import gradio as gr import os import shutil import subprocess from share_btn import community_icon_html, loading_icon_html, share_js import cv2 import numpy as np from moviepy.editor import VideoFileClip, concatenate_videoclips import math from huggingface_hub import snapshot_download os.environ['CUDA_LAUNCH_BLOCKING'] = '1' model_ids = [ 'runwayml/stable-diffusion-v1-5', 'lllyasviel/sd-controlnet-depth', 'lllyasviel/sd-controlnet-canny', 'lllyasviel/sd-controlnet-openpose', ] for model_id in model_ids: model_name = model_id.split('/')[-1] snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') def load_model(model_id): local_dir = f'checkpoints/stable-diffusion-v1-5' # Check if the directory exists if os.path.exists(local_dir): # Delete the directory if it exists shutil.rmtree(local_dir) model_name = model_id.split('/')[-1] snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') os.rename(f'checkpoints/{model_name}', f'checkpoints/stable-diffusion-v1-5') return "model loaded" def get_frame_count(filepath): if filepath is not None: video = cv2.VideoCapture(filepath) frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) video.release() # LIMITS if frame_count > 24 : frame_count = 24 # limit to 24 frames to avoid cuDNN errors return gr.update(maximum=frame_count) else: return gr.update(value=1, maximum=12 ) def get_video_dimension(filepath): video = cv2.VideoCapture(filepath) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(video.get(cv2.CAP_PROP_FPS)) frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) video.release() return width, height, fps, frame_count def resize_video(input_vid, output_vid, width, height, fps): print(f"RESIZING ...") # Open the input video file video = cv2.VideoCapture(input_vid) # Get the original video's width and height original_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) original_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Create a VideoWriter object to write the resized video fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video output_video = cv2.VideoWriter(output_vid, fourcc, fps, (width, height)) while True: # Read a frame from the input video ret, frame = video.read() if not ret: break # Resize the frame to the desired dimensions resized_frame = cv2.resize(frame, (width, height)) # Write the resized frame to the output video file output_video.write(resized_frame) # Release the video objects video.release() output_video.release() print(f"RESIZE VIDEO DONE!") return output_vid def make_nearest_multiple_of_32(number): remainder = number % 32 if remainder <= 16: number -= remainder else: number += 32 - remainder return number def change_video_fps(input_path): print(f"CHANGING FIANL OUTPUT FPS") cap = cv2.VideoCapture(input_path) # Check if the final file already exists if os.path.exists('output_video.mp4'): # Delete the existing file os.remove('output_video.mp4') output_path = 'output_video.mp4' fourcc = cv2.VideoWriter_fourcc(*'mp4v') output_fps = 12 output_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) out = cv2.VideoWriter(output_path, fourcc, output_fps, output_size) frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break # Write the current frame to the output video multiple times to increase the frame rate for _ in range(output_fps // 8): out.write(frame) frame_count += 1 print(f'Processed frame {frame_count}') cap.release() out.release() cv2.destroyAllWindows() return 'output_video.mp4' def run_inference(prompt, video_path, condition, video_length, seed): seed = math.floor(seed) o_width = get_video_dimension(video_path)[0] o_height = get_video_dimension(video_path)[1] # Prepare dimensions if o_width > 512 : # Calculate the new height while maintaining the aspect ratio n_height = int(o_height / o_width * 512) n_width = 512 # Make sure new dimensions are multipe of 32 r_width = make_nearest_multiple_of_32(n_width) r_height = make_nearest_multiple_of_32(n_height) print(f"multiple of 32 sizes : {r_width}x{r_height}") # Get FPS of original video input original_fps = get_video_dimension(video_path)[2] if original_fps > 12 : print(f"FPS is too high: {original_fps}") target_fps = 12 else : target_fps = original_fps print(f"NEW INPUT FPS: {target_fps}, NEW LENGTH: {video_length}") # Check if the resized file already exists if os.path.exists('resized.mp4'): # Delete the existing file os.remove('resized.mp4') resized = resize_video(video_path, 'resized.mp4', r_width, r_height, target_fps) resized_video_fcount = get_video_dimension(resized)[3] print(f"RESIZED VIDEO FRAME COUNT: {resized_video_fcount}") # Make sure new total frame count is enough to handle chosen video length if video_length > resized_video_fcount : video_length = resized_video_fcount # video_length = int((target_fps * video_length) / original_fps) output_path = 'output/' os.makedirs(output_path, exist_ok=True) # Check if the file already exists if os.path.exists(os.path.join(output_path, f"result.mp4")): # Delete the existing file os.remove(os.path.join(output_path, f"result.mp4")) print(f"RUNNING INFERENCE ...") if video_length > 12: command = f"python inference.py --prompt '{prompt}' --inference_steps 50 --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_chunk_path 'result' --width {r_width} --height {r_height} --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 19 20 --is_long_video" else: command = f"python inference.py --prompt '{prompt}' --inference_steps 50 --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_chunk_path 'result' --width {r_width} --height {r_height} --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 19 20" try: subprocess.run(command, shell=True) except cuda.Error as e: return f"CUDA Error: {e}", None except RuntimeError as e: return f"Runtime Error: {e}", None # Construct the video path video_path_output = os.path.join(output_path, f"result.mp4") # Resize to original video input size #o_width = get_video_dimension(video_path)[0] #o_height = get_video_dimension(video_path)[1] #resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps) # Check generated video FPS gen_fps = get_video_dimension(video_path_output)[2] print(f"GEN VIDEO FPS: {gen_fps}") final = change_video_fps(video_path_output) print(f"FINISHED !") return final, gr.Group.update(visible=True) css=""" #col-container {max-width: 810px; margin-left: auto; margin-right: auto;} .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; } #share-btn-container:hover { background-color: #060606; } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important; right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } #share-btn-container.hidden { display: none!important; } img[src*='#center'] { display: block; margin: auto; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("""

ControlVideo

Pytorch implementation of "ControlVideo: Training-free Controllable Text-to-Video Generation"

[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/ControlVideo?duplicate=true) """) with gr.Column(): with gr.Row(): video_path = gr.Video(label="Input video", source="upload", type="filepath", visible=True, elem_id="video-in") with gr.Column(): video_res = gr.Video(label="result", elem_id="video-out") with gr.Group(elem_id="share-btn-container", visible=False) as share_group: community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Share to community", elem_id="share-btn") with gr.Row(): chosen_model = gr.Dropdown(label="Diffusion model (*1.5)", choices=['runwayml/stable-diffusion-v1-5','nitrosocke/Ghibli-Diffusion'], value="runwayml/stable-diffusion-v1-5", allow_custom_value=True) model_status = gr.Textbox(label="status") load_model_btn = gr.Button("load model (optional)") prompt = gr.Textbox(label="prompt", info="If you loaded a custom model, do not forget to include Prompt trigger", elem_id="prompt-in") with gr.Column(): video_length = gr.Slider(label="Video length", info="How many frames do you want to process ? For demo purpose, max is set to 24", minimum=1, maximum=12, step=1, value=2) with gr.Row(): condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth") seed = gr.Number(label="seed", value=42) submit_btn = gr.Button("Submit") gr.Examples( examples=[["Indiana Jones moonwalk in the wild jungle", "./examples/moonwalk.mp4", 'depth', 24, 192837465]], fn=run_inference, inputs=[prompt, video_path, condition, video_length, seed ], outputs=[video_res, share_group], cache_examples=False ) share_button.click(None, [], [], _js=share_js) load_model_btn.click(fn=load_model, inputs=[chosen_model], outputs=[model_status], queue=False) video_path.change(fn=get_frame_count, inputs=[video_path], outputs=[video_length], queue=False ) submit_btn.click(fn=run_inference, inputs=[prompt, video_path, condition, video_length, seed ], outputs=[video_res, share_group]) demo.queue(max_size=12).launch()