Spaces:
Paused
Paused
Create inversion.py
Browse files- stylegan2/inversion.py +206 -0
stylegan2/inversion.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import optim
|
3 |
+
from torch.nn import functional as FF
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
from tqdm import tqdm
|
7 |
+
import dataclasses
|
8 |
+
|
9 |
+
from .lpips import util
|
10 |
+
|
11 |
+
|
12 |
+
def noise_regularize(noises):
|
13 |
+
loss = 0
|
14 |
+
|
15 |
+
for noise in noises:
|
16 |
+
size = noise.shape[2]
|
17 |
+
|
18 |
+
while True:
|
19 |
+
loss = (
|
20 |
+
loss
|
21 |
+
+ (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
|
22 |
+
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
|
23 |
+
)
|
24 |
+
|
25 |
+
if size <= 8:
|
26 |
+
break
|
27 |
+
|
28 |
+
noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2])
|
29 |
+
noise = noise.mean([3, 5])
|
30 |
+
size //= 2
|
31 |
+
|
32 |
+
return loss
|
33 |
+
|
34 |
+
|
35 |
+
def noise_normalize_(noises):
|
36 |
+
for noise in noises:
|
37 |
+
mean = noise.mean()
|
38 |
+
std = noise.std()
|
39 |
+
|
40 |
+
noise.data.add_(-mean).div_(std)
|
41 |
+
|
42 |
+
|
43 |
+
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
|
44 |
+
lr_ramp = min(1, (1 - t) / rampdown)
|
45 |
+
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
|
46 |
+
lr_ramp = lr_ramp * min(1, t / rampup)
|
47 |
+
|
48 |
+
return initial_lr * lr_ramp
|
49 |
+
|
50 |
+
|
51 |
+
def latent_noise(latent, strength):
|
52 |
+
noise = torch.randn_like(latent) * strength
|
53 |
+
|
54 |
+
return latent + noise
|
55 |
+
|
56 |
+
|
57 |
+
def make_image(tensor):
|
58 |
+
return (
|
59 |
+
tensor.detach()
|
60 |
+
.clamp_(min=-1, max=1)
|
61 |
+
.add(1)
|
62 |
+
.div_(2)
|
63 |
+
.mul(255)
|
64 |
+
.type(torch.uint8)
|
65 |
+
.permute(0, 2, 3, 1)
|
66 |
+
.to("cpu")
|
67 |
+
.numpy()
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
@dataclasses.dataclass
|
72 |
+
class InverseConfig:
|
73 |
+
lr_warmup = 0.05
|
74 |
+
lr_decay = 0.25
|
75 |
+
lr = 0.1
|
76 |
+
noise = 0.05
|
77 |
+
noise_decay = 0.75
|
78 |
+
step = 1000
|
79 |
+
noise_regularize = 1e5
|
80 |
+
mse = 0
|
81 |
+
w_plus = False,
|
82 |
+
|
83 |
+
|
84 |
+
def inverse_image(
|
85 |
+
g_ema,
|
86 |
+
image,
|
87 |
+
image_size=256,
|
88 |
+
config=InverseConfig()
|
89 |
+
):
|
90 |
+
device = "cuda"
|
91 |
+
args = config
|
92 |
+
|
93 |
+
n_mean_latent = 10000
|
94 |
+
|
95 |
+
resize = min(image_size, 256)
|
96 |
+
|
97 |
+
transform = transforms.Compose(
|
98 |
+
[
|
99 |
+
transforms.Resize(resize),
|
100 |
+
transforms.CenterCrop(resize),
|
101 |
+
transforms.ToTensor(),
|
102 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
103 |
+
]
|
104 |
+
)
|
105 |
+
|
106 |
+
imgs = []
|
107 |
+
img = transform(image)
|
108 |
+
imgs.append(img)
|
109 |
+
|
110 |
+
imgs = torch.stack(imgs, 0).to(device)
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
noise_sample = torch.randn(n_mean_latent, 512, device=device)
|
114 |
+
latent_out = g_ema.style(noise_sample)
|
115 |
+
|
116 |
+
latent_mean = latent_out.mean(0)
|
117 |
+
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5
|
118 |
+
|
119 |
+
percept = util.PerceptualLoss(
|
120 |
+
model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
|
121 |
+
)
|
122 |
+
|
123 |
+
noises_single = g_ema.make_noise()
|
124 |
+
noises = []
|
125 |
+
for noise in noises_single:
|
126 |
+
noises.append(noise.repeat(imgs.shape[0], 1, 1, 1).normal_())
|
127 |
+
|
128 |
+
latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(imgs.shape[0], 1)
|
129 |
+
|
130 |
+
if args.w_plus:
|
131 |
+
latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)
|
132 |
+
|
133 |
+
latent_in.requires_grad = True
|
134 |
+
|
135 |
+
for noise in noises:
|
136 |
+
noise.requires_grad = True
|
137 |
+
|
138 |
+
optimizer = optim.Adam([latent_in] + noises, lr=args.lr)
|
139 |
+
|
140 |
+
pbar = tqdm(range(args.step))
|
141 |
+
latent_path = []
|
142 |
+
|
143 |
+
for i in pbar:
|
144 |
+
t = i / args.step
|
145 |
+
lr = get_lr(t, args.lr)
|
146 |
+
optimizer.param_groups[0]["lr"] = lr
|
147 |
+
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_decay) ** 2
|
148 |
+
latent_n = latent_noise(latent_in, noise_strength.item())
|
149 |
+
|
150 |
+
latent, noise = g_ema.prepare([latent_n], input_is_latent=True, noise=noises)
|
151 |
+
img_gen, F = g_ema.generate(latent, noise)
|
152 |
+
|
153 |
+
batch, channel, height, width = img_gen.shape
|
154 |
+
|
155 |
+
if height > 256:
|
156 |
+
factor = height // 256
|
157 |
+
|
158 |
+
img_gen = img_gen.reshape(
|
159 |
+
batch, channel, height // factor, factor, width // factor, factor
|
160 |
+
)
|
161 |
+
img_gen = img_gen.mean([3, 5])
|
162 |
+
|
163 |
+
p_loss = percept(img_gen, imgs).sum()
|
164 |
+
n_loss = noise_regularize(noises)
|
165 |
+
mse_loss = FF.mse_loss(img_gen, imgs)
|
166 |
+
|
167 |
+
loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss
|
168 |
+
|
169 |
+
optimizer.zero_grad()
|
170 |
+
loss.backward()
|
171 |
+
optimizer.step()
|
172 |
+
|
173 |
+
noise_normalize_(noises)
|
174 |
+
|
175 |
+
if (i + 1) % 100 == 0:
|
176 |
+
latent_path.append(latent_in.detach().clone())
|
177 |
+
|
178 |
+
pbar.set_description(
|
179 |
+
(
|
180 |
+
f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};"
|
181 |
+
f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}"
|
182 |
+
)
|
183 |
+
)
|
184 |
+
|
185 |
+
latent, noise = g_ema.prepare([latent_path[-1]], input_is_latent=True, noise=noises)
|
186 |
+
img_gen, F = g_ema.generate(latent, noise)
|
187 |
+
|
188 |
+
img_ar = make_image(img_gen)
|
189 |
+
|
190 |
+
i = 0
|
191 |
+
|
192 |
+
noise_single = []
|
193 |
+
for noise in noises:
|
194 |
+
noise_single.append(noise[i: i + 1])
|
195 |
+
|
196 |
+
result = {
|
197 |
+
"latent": latent,
|
198 |
+
"noise": noise_single,
|
199 |
+
'F': F,
|
200 |
+
"sample": img_gen,
|
201 |
+
}
|
202 |
+
|
203 |
+
pil_img = Image.fromarray(img_ar[i])
|
204 |
+
pil_img.save('project.png')
|
205 |
+
|
206 |
+
return result
|