from typing import Tuple import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from diffusers.models.modeling_utils import ModelMixin from src.models.motion_module import zero_module from src.models.resnet import InflatedConv3d class FaceLocator(ModelMixin): def __init__( self, conditioning_embedding_channels: int, conditioning_channels: int = 1, block_out_channels: Tuple[int] = (16, 32, 64, 128), ): super().__init__() self.conv_in = InflatedConv3d( conditioning_channels, block_out_channels[0], kernel_size=3, padding=1 ) self.blocks = nn.ModuleList([]) for i in range(len(block_out_channels) - 1): channel_in = block_out_channels[i] channel_out = block_out_channels[i + 1] self.blocks.append( InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1) ) self.blocks.append( InflatedConv3d( channel_in, channel_out, kernel_size=3, padding=1, stride=2 ) ) self.conv_out = zero_module( InflatedConv3d( block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1, ) ) def forward(self, conditioning): embedding = self.conv_in(conditioning) embedding = F.silu(embedding) for block in self.blocks: embedding = block(embedding) embedding = F.silu(embedding) embedding = self.conv_out(embedding) return embedding