Spaces:
Running
Running
import gradio as gr | |
from gradio_client import Client | |
import os | |
hf_token = os.environ.get("HF_TKN") | |
def get_instantID(portrait_in, prompt): | |
client = Client("https://fffiloni-instantid.hf.space/", hf_token=hf_token) | |
negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green" | |
result = client.predict( | |
portrait_in, # filepath in 'Upload a photo of your face' Image component | |
None, # filepath in 'Upload a reference pose image (optional)' Image component | |
prompt, # str in 'Prompt' Textbox component | |
negative_prompt, # str in 'Negative Prompt' Textbox component | |
"(No style)", # Literal['(No style)', 'Watercolor', 'Film Noir', 'Neon', 'Jungle', 'Mars', 'Vibrant Color', 'Snow', 'Line art'] in 'Style template' Dropdown component | |
True, # bool in 'Enhance non-face region' Checkbox component | |
20, # float (numeric value between 20 and 100) in 'Number of sample steps' Slider component | |
0.8, # float (numeric value between 0 and 1.5) in 'IdentityNet strength (for fedility)' Slider component | |
0.8, # float (numeric value between 0 and 1.5) in 'Image adapter strength (for detail)' Slider component | |
5, # float (numeric value between 0.1 and 10.0) in 'Guidance scale' Slider component | |
0, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component | |
True, # bool in 'Randomize seed' Checkbox component | |
api_name="/generate_image" | |
) | |
print(result) | |
return result[0] | |
def get_video(image_in, prompt): | |
client = Client("https://modelscope-i2vgen-xl.hf.space/") | |
result = client.predict( | |
image_in, | |
prompt, | |
fn_index=1 | |
) | |
print(result) | |
return result | |
def infer(image_in, prompt): | |
iid_img = get_instantID(image_in, prompt) | |
video_res = get_video(iid_img, prompt) | |
print(video_res) | |
return video_res | |
gr.Interface( | |
fn = infer, | |
inputs = [ | |
gr.Image(type="filepath"), | |
gr.Textbox() | |
], | |
outputs = [ | |
gr.Video() | |
] | |
).launch() |