InstantID-2V / app.py
fffiloni's picture
Update app.py
f6dbf53 verified
raw
history blame
5.17 kB
import gradio as gr
from gradio_client import Client
import os
hf_token = os.environ.get("HF_TKN")
def get_instantID(portrait_in, condition_pose, prompt):
client = Client("https://fffiloni-instantid.hf.space/", hf_token=hf_token)
negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green"
result = client.predict(
portrait_in, # filepath in 'Upload a photo of your face' Image component
condition_pose, # filepath in 'Upload a reference pose image (optional)' Image component
prompt, # str in 'Prompt' Textbox component
negative_prompt, # str in 'Negative Prompt' Textbox component
"(No style)", # Literal['(No style)', 'Watercolor', 'Film Noir', 'Neon', 'Jungle', 'Mars', 'Vibrant Color', 'Snow', 'Line art'] in 'Style template' Dropdown component
True, # bool in 'Enhance non-face region' Checkbox component
20, # float (numeric value between 20 and 100) in 'Number of sample steps' Slider component
0.8, # float (numeric value between 0 and 1.5) in 'IdentityNet strength (for fedility)' Slider component
0.8, # float (numeric value between 0 and 1.5) in 'Image adapter strength (for detail)' Slider component
5, # float (numeric value between 0.1 and 10.0) in 'Guidance scale' Slider component
0, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component
True, # bool in 'Randomize seed' Checkbox component
api_name="/generate_image"
)
print(result)
return result[0]
def get_video_i2vgen(image_in, prompt):
client = Client("https://modelscope-i2vgen-xl.hf.space/")
result = client.predict(
image_in,
prompt,
fn_index=1
)
print(result)
return result
def get_video_svd(image_in):
from gradio_client import Client
client = Client("https://multimodalart-stable-video-diffusion.hf.space/--replicas/ej45m/")
result = client.predict(
image_in, # filepath in 'Upload your image' Image component
0, # float (numeric value between 0 and 9223372036854775807) in 'Seed' Slider component
True, # bool in 'Randomize seed' Checkbox component
127, # float (numeric value between 1 and 255) in 'Motion bucket id' Slider component
6, # float (numeric value between 5 and 30) in 'Frames per second' Slider component
api_name="/video"
)
print(result)
return result[0]["video"]
def infer(image_in, camera_shot, conditional_pose, prompt, chosen_model):
if camera_shot == "custom":
if conditional_pose != None:
conditional_pose = conditional_pose
else :
raise gr.Error("No custom conditional shot found !")
elif camera_shot == "close-up":
conditional_pose = "camera_shots/close_up_shot.jpeg"
elif camera_shot == "medium close-up":
conditional_pose = "camera_shots/medium_close_up.jpeg"
elif camera_shot == "medium shot":
conditional_pose = "camera_shots/medium_shot.png"
elif camera_shot == "cowboy shot":
conditional_pose = "camera_shots/cowboy_shot.jpeg"
elif camera_shot == "medium full shot":
conditional_pose = "camera_shots/medium_full_shot.png"
elif camera_shot == "full shot":
conditional_pose = "camera_shots/full_shot.jpeg"
iid_img = get_instantID(image_in, conditional_pose, prompt)
if chosen_model == "i2vgen-xl" :
video_res = get_video_i2vgen(iid_img, prompt)
elif chosen_model == "stable-video" :
video_res = get_video_svd(image_in)
print(video_res)
return video_res
with gr.Blocks as demo:
with gr.Column():
gr.HTML("""
""")
with gr.Row():
with gr.Column():
face_in = gr.Image(type="filepath", label="Face to copy")
camera_shot = gr.Dropdown(
label = "Camera Shot",
info = "Use standard camera shots vocabulary, or drop your custom shot as conditional pose (1280*720 ratio is recommended)"
choices = [
"custom", "close-up", "medium close-up", "medium shot", "cowboy shot", "medium full shot", "full shot"
],
value = "custom"
)
condition_shot = gr.Image(type="filepath", label="Custom conditional shot (Optional)")
prompt = gr.Textbox(label="Prompt")
chosen_model = gr.Radio(label="Choose a model", choices=["i2vgen-xl", "stable-video"], value="i2vgen-xl", interactive=False, visible=False)
submit_btn = gr.Button("Submit")
with gr.Column():
video_out = gr.Video()
submit_btn.click(
fn = infer,
inputs = [
face_in,
camera_shot,
condition_shot,
prompt,
chosen_model
],
outputs = [
video_out
]
)
demo.queue(max_size=6).launch(debug=True)