import gradio as gr from gradio_client import Client def get_instantID(portrait_in, prompt): client = Client("https://instantx-instantid.hf.space/") negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green" result = client.predict( portrait_in, # filepath in 'Upload a photo of your face' Image component None, # filepath in 'Upload a reference pose image (optional)' Image component prompt, # str in 'Prompt' Textbox component negative_prompt, # str in 'Negative Prompt' Textbox component "(No style)", # Literal['(No style)', 'Watercolor', 'Film Noir', 'Neon', 'Jungle', 'Mars', 'Vibrant Color', 'Snow', 'Line art'] in 'Style template' Dropdown component True, # bool in 'Enhance non-face region' Checkbox component 20, # float (numeric value between 20 and 100) in 'Number of sample steps' Slider component 0.8, # float (numeric value between 0 and 1.5) in 'IdentityNet strength (for fedility)' Slider component 0.8, # float (numeric value between 0 and 1.5) in 'Image adapter strength (for detail)' Slider component 5, # float (numeric value between 0.1 and 10.0) in 'Guidance scale' Slider component 0, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component api_name="/generate_image" ) print(result) return result[0] def get_video(image_in, prompt): client = Client("https://modelscope-i2vgen-xl.hf.space/") result = client.predict( image_in, prompt ) print(result) return result def infer(image_in, prompt): iid_img = get_instantID(image_in, prompt) video_res = get_video(iid_img, prompt) print(video_res) return video_res gr.Interface( fn = infer, inputs = [ gr.Image(type="filepath"), gr.Textbox() ], outputs = [ gr.Video() ] ).launch()