File size: 5,056 Bytes
e394497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import math
import numpy as np
import matplotlib
import cv2


eps = 0.01

def alpha_blend_color(color, alpha):
    """blend color according to point conf
    """
    return [int(c * alpha) for c in color]

def draw_bodypose(canvas, candidate, subset, score):
    H, W, C = canvas.shape
    candidate = np.array(candidate)
    subset = np.array(subset)

    stickwidth = 4

    limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
               [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
               [1, 16], [16, 18], [3, 17], [6, 18]]

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
              [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
              [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]

    for i in range(17):
        for n in range(len(subset)):
            index = subset[n][np.array(limbSeq[i]) - 1]
            conf = score[n][np.array(limbSeq[i]) - 1]
            if conf[0] < 0.3 or conf[1] < 0.3:
                continue
            Y = candidate[index.astype(int), 0] * float(W)
            X = candidate[index.astype(int), 1] * float(H)
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
            cv2.fillConvexPoly(canvas, polygon, alpha_blend_color(colors[i], conf[0] * conf[1]))

    canvas = (canvas * 0.6).astype(np.uint8)

    for i in range(18):
        for n in range(len(subset)):
            index = int(subset[n][i])
            if index == -1:
                continue
            x, y = candidate[index][0:2]
            conf = score[n][i]
            x = int(x * W)
            y = int(y * H)
            cv2.circle(canvas, (int(x), int(y)), 4, alpha_blend_color(colors[i], conf), thickness=-1)

    return canvas

def draw_handpose(canvas, all_hand_peaks, all_hand_scores):
    H, W, C = canvas.shape

    edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
             [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]

    for peaks, scores in zip(all_hand_peaks, all_hand_scores):

        for ie, e in enumerate(edges):
            x1, y1 = peaks[e[0]]
            x2, y2 = peaks[e[1]]
            x1 = int(x1 * W)
            y1 = int(y1 * H)
            x2 = int(x2 * W)
            y2 = int(y2 * H)
            score = int(scores[e[0]] * scores[e[1]] * 255)
            if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
                cv2.line(canvas, (x1, y1), (x2, y2), 
                         matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * score, thickness=2)

        for i, keyponit in enumerate(peaks):
            x, y = keyponit
            x = int(x * W)
            y = int(y * H)
            score = int(scores[i] * 255)
            if x > eps and y > eps:
                cv2.circle(canvas, (x, y), 4, (0, 0, score), thickness=-1)
    return canvas

def draw_facepose(canvas, all_lmks, all_scores):
    H, W, C = canvas.shape
    for lmks, scores in zip(all_lmks, all_scores):
        for lmk, score in zip(lmks, scores):
            x, y = lmk
            x = int(x * W)
            y = int(y * H)
            conf = int(score * 255)
            if x > eps and y > eps:
                cv2.circle(canvas, (x, y), 3, (conf, conf, conf), thickness=-1)
    return canvas

def draw_pose(pose, H, W, ref_w=2160):
    """vis dwpose outputs

    Args:
        pose (List): DWposeDetector outputs in dwpose_detector.py
        H (int): height
        W (int): width
        ref_w (int, optional) Defaults to 2160.

    Returns:
        np.ndarray: image pixel value in RGB mode
    """
    bodies = pose['bodies']
    faces = pose['faces']
    hands = pose['hands']
    candidate = bodies['candidate']
    subset = bodies['subset']

    sz = min(H, W)
    sr = (ref_w / sz) if sz != ref_w else 1

    ########################################## create zero canvas ##################################################
    canvas = np.zeros(shape=(int(H*sr), int(W*sr), 3), dtype=np.uint8)

    ########################################### draw body pose #####################################################
    canvas = draw_bodypose(canvas, candidate, subset, score=bodies['score'])

    ########################################### draw hand pose #####################################################
    canvas = draw_handpose(canvas, hands, pose['hands_score'])

    ########################################### draw face pose #####################################################
    canvas = draw_facepose(canvas, faces, pose['faces_score'])

    return cv2.cvtColor(cv2.resize(canvas, (W, H)), cv2.COLOR_BGR2RGB).transpose(2, 0, 1)