Spaces:
Running
Running
from tqdm import tqdm | |
import decord | |
import numpy as np | |
from .util import draw_pose | |
from .dwpose_detector import dwpose_detector as dwprocessor | |
def get_video_pose( | |
video_path: str, | |
ref_image: np.ndarray, | |
sample_stride: int=1): | |
"""preprocess ref image pose and video pose | |
Args: | |
video_path (str): video pose path | |
ref_image (np.ndarray): reference image | |
sample_stride (int, optional): Defaults to 1. | |
Returns: | |
np.ndarray: sequence of video pose | |
""" | |
# select ref-keypoint from reference pose for pose rescale | |
ref_pose = dwprocessor(ref_image) | |
ref_keypoint_id = [0, 1, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] | |
ref_keypoint_id = [i for i in ref_keypoint_id \ | |
if len(ref_pose['bodies']['subset']) > 0 and ref_pose['bodies']['subset'][0][i] >= .0] | |
ref_body = ref_pose['bodies']['candidate'][ref_keypoint_id] | |
height, width, _ = ref_image.shape | |
# read input video | |
vr = decord.VideoReader(video_path, ctx=decord.cpu(0)) | |
sample_stride *= max(1, int(vr.get_avg_fps() / 24)) | |
frames = vr.get_batch(list(range(0, len(vr), sample_stride))).asnumpy() | |
detected_poses = [dwprocessor(frm) for frm in tqdm(frames, desc="DWPose")] | |
dwprocessor.release_memory() | |
detected_bodies = np.stack( | |
[p['bodies']['candidate'] for p in detected_poses if p['bodies']['candidate'].shape[0] == 18])[:, | |
ref_keypoint_id] | |
# compute linear-rescale params | |
ay, by = np.polyfit(detected_bodies[:, :, 1].flatten(), np.tile(ref_body[:, 1], len(detected_bodies)), 1) | |
fh, fw, _ = vr[0].shape | |
ax = ay / (fh / fw / height * width) | |
bx = np.mean(np.tile(ref_body[:, 0], len(detected_bodies)) - detected_bodies[:, :, 0].flatten() * ax) | |
a = np.array([ax, ay]) | |
b = np.array([bx, by]) | |
output_pose = [] | |
# pose rescale | |
for detected_pose in detected_poses: | |
detected_pose['bodies']['candidate'] = detected_pose['bodies']['candidate'] * a + b | |
detected_pose['faces'] = detected_pose['faces'] * a + b | |
detected_pose['hands'] = detected_pose['hands'] * a + b | |
im = draw_pose(detected_pose, height, width) | |
output_pose.append(np.array(im)) | |
return np.stack(output_pose) | |
def get_image_pose(ref_image): | |
"""process image pose | |
Args: | |
ref_image (np.ndarray): reference image pixel value | |
Returns: | |
np.ndarray: pose visual image in RGB-mode | |
""" | |
height, width, _ = ref_image.shape | |
ref_pose = dwprocessor(ref_image) | |
pose_img = draw_pose(ref_pose, height, width) | |
return np.array(pose_img) | |