fffiloni's picture
Upload 25 files
e394497 verified
raw
history blame
2.35 kB
import logging
import torch
import torch.utils.checkpoint
from diffusers.models import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from ..modules.unet import UNetSpatioTemporalConditionModel
from ..modules.pose_net import PoseNet
from ..pipelines.pipeline_mimicmotion import MimicMotionPipeline
logger = logging.getLogger(__name__)
class MimicMotionModel(torch.nn.Module):
def __init__(self, base_model_path):
"""construnct base model components and load pretrained svd model except pose-net
Args:
base_model_path (str): pretrained svd model path
"""
super().__init__()
self.unet = UNetSpatioTemporalConditionModel.from_config(
UNetSpatioTemporalConditionModel.load_config(base_model_path, subfolder="unet"))
self.vae = AutoencoderKLTemporalDecoder.from_pretrained(
base_model_path, subfolder="vae", torch_dtype=torch.float16, variant="fp16")
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_model_path, subfolder="image_encoder", torch_dtype=torch.float16, variant="fp16")
self.noise_scheduler = EulerDiscreteScheduler.from_pretrained(
base_model_path, subfolder="scheduler")
self.feature_extractor = CLIPImageProcessor.from_pretrained(
base_model_path, subfolder="feature_extractor")
# pose_net
self.pose_net = PoseNet(noise_latent_channels=self.unet.config.block_out_channels[0])
def create_pipeline(infer_config, device):
"""create mimicmotion pipeline and load pretrained weight
Args:
infer_config (str):
device (str or torch.device): "cpu" or "cuda:{device_id}"
"""
mimicmotion_models = MimicMotionModel(infer_config.base_model_path)
mimicmotion_models.load_state_dict(torch.load(infer_config.ckpt_path, map_location="cpu"), strict=False)
pipeline = MimicMotionPipeline(
vae=mimicmotion_models.vae,
image_encoder=mimicmotion_models.image_encoder,
unet=mimicmotion_models.unet,
scheduler=mimicmotion_models.noise_scheduler,
feature_extractor=mimicmotion_models.feature_extractor,
pose_net=mimicmotion_models.pose_net
)
return pipeline