import inspect from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Union import PIL.Image import einops import numpy as np import torch from diffusers.image_processor import VaeImageProcessor, PipelineImageInput from diffusers.models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion \ import _resize_with_antialiasing, _append_dims from diffusers.schedulers import EulerDiscreteScheduler from diffusers.utils import BaseOutput, logging from diffusers.utils.torch_utils import is_compiled_module, randn_tensor from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from ..modules.pose_net import PoseNet logger = logging.get_logger(__name__) # pylint: disable=invalid-name def _append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") return x[(...,) + (None,) * dims_to_append] # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"): batch_size, channels, num_frames, height, width = video.shape outputs = [] for batch_idx in range(batch_size): batch_vid = video[batch_idx].permute(1, 0, 2, 3) batch_output = processor.postprocess(batch_vid, output_type) outputs.append(batch_output) if output_type == "np": outputs = np.stack(outputs) elif output_type == "pt": outputs = torch.stack(outputs) elif not output_type == "pil": raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]") return outputs @dataclass class MimicMotionPipelineOutput(BaseOutput): r""" Output class for mimicmotion pipeline. Args: frames (`[List[List[PIL.Image.Image]]`, `np.ndarray`, `torch.Tensor`]): List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size, num_frames, height, width, num_channels)`. """ frames: Union[List[List[PIL.Image.Image]], np.ndarray, torch.Tensor] class MimicMotionPipeline(DiffusionPipeline): r""" Pipeline to generate video from an input image using Stable Video Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKLTemporalDecoder`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K] (https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)). unet ([`UNetSpatioTemporalConditionModel`]): A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents. scheduler ([`EulerDiscreteScheduler`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images. pose_net ([`PoseNet`]): A `` to inject pose signals into unet. """ model_cpu_offload_seq = "image_encoder->unet->vae" _callback_tensor_inputs = ["latents"] def __init__( self, vae: AutoencoderKLTemporalDecoder, image_encoder: CLIPVisionModelWithProjection, unet: UNetSpatioTemporalConditionModel, scheduler: EulerDiscreteScheduler, feature_extractor: CLIPImageProcessor, pose_net: PoseNet, ): super().__init__() self.register_modules( vae=vae, image_encoder=image_encoder, unet=unet, scheduler=scheduler, feature_extractor=feature_extractor, pose_net=pose_net, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) def _encode_image( self, image: PipelineImageInput, device: Union[str, torch.device], num_videos_per_prompt: int, do_classifier_free_guidance: bool): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.image_processor.pil_to_numpy(image) image = self.image_processor.numpy_to_pt(image) # We normalize the image before resizing to match with the original implementation. # Then we unnormalize it after resizing. image = image * 2.0 - 1.0 image = _resize_with_antialiasing(image, (224, 224)) image = (image + 1.0) / 2.0 # Normalize the image with for CLIP input image = self.feature_extractor( images=image, do_normalize=True, do_center_crop=False, do_resize=False, do_rescale=False, return_tensors="pt", ).pixel_values image = image.to(device=device, dtype=dtype) image_embeddings = self.image_encoder(image).image_embeds image_embeddings = image_embeddings.unsqueeze(1) # duplicate image embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = image_embeddings.shape image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) if do_classifier_free_guidance: negative_image_embeddings = torch.zeros_like(image_embeddings) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) return image_embeddings def _encode_vae_image( self, image: torch.Tensor, device: Union[str, torch.device], num_videos_per_prompt: int, do_classifier_free_guidance: bool, ): image = image.to(device=device, dtype=self.vae.dtype) image_latents = self.vae.encode(image).latent_dist.mode() if do_classifier_free_guidance: negative_image_latents = torch.zeros_like(image_latents) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_latents = torch.cat([negative_image_latents, image_latents]) # duplicate image_latents for each generation per prompt, using mps friendly method image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1) return image_latents def _get_add_time_ids( self, fps: int, motion_bucket_id: int, noise_aug_strength: float, dtype: torch.dtype, batch_size: int, num_videos_per_prompt: int, do_classifier_free_guidance: bool, ): add_time_ids = [fps, motion_bucket_id, noise_aug_strength] passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, " \ f"but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. " \ f"Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1) if do_classifier_free_guidance: add_time_ids = torch.cat([add_time_ids, add_time_ids]) return add_time_ids def decode_latents( self, latents: torch.Tensor, num_frames: int, decode_chunk_size: int = 8): # [batch, frames, channels, height, width] -> [batch*frames, channels, height, width] latents = latents.flatten(0, 1) latents = 1 / self.vae.config.scaling_factor * latents forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys()) # decode decode_chunk_size frames at a time to avoid OOM frames = [] for i in range(0, latents.shape[0], decode_chunk_size): num_frames_in = latents[i: i + decode_chunk_size].shape[0] decode_kwargs = {} if accepts_num_frames: # we only pass num_frames_in if it's expected decode_kwargs["num_frames"] = num_frames_in frame = self.vae.decode(latents[i: i + decode_chunk_size], **decode_kwargs).sample frames.append(frame.cpu()) frames = torch.cat(frames, dim=0) # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width] frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 frames = frames.float() return frames def check_inputs(self, image, height, width): if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") def prepare_latents( self, batch_size: int, num_frames: int, num_channels_latents: int, height: int, width: int, dtype: torch.dtype, device: Union[str, torch.device], generator: torch.Generator, latents: Optional[torch.Tensor] = None, ): shape = ( batch_size, num_frames, num_channels_latents // 2, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): if isinstance(self.guidance_scale, (int, float)): return self.guidance_scale > 1 return self.guidance_scale.max() > 1 @property def num_timesteps(self): return self._num_timesteps def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs @torch.no_grad() def __call__( self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], image_pose: Union[torch.FloatTensor], height: int = 576, width: int = 1024, num_frames: Optional[int] = None, tile_size: Optional[int] = 16, tile_overlap: Optional[int] = 4, num_inference_steps: int = 25, min_guidance_scale: float = 1.0, max_guidance_scale: float = 3.0, fps: int = 7, motion_bucket_id: int = 127, noise_aug_strength: float = 0.02, image_only_indicator: bool = False, decode_chunk_size: Optional[int] = None, num_videos_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], return_dict: bool = True, device: Union[str, torch.device] =None, ): r""" The call function to the pipeline for generation. Args: image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): Image or images to guide image generation. If you provide a tensor, it needs to be compatible with [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/ feature_extractor/preprocessor_config.json). height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_frames (`int`, *optional*): The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt` num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. min_guidance_scale (`float`, *optional*, defaults to 1.0): The minimum guidance scale. Used for the classifier free guidance with first frame. max_guidance_scale (`float`, *optional*, defaults to 3.0): The maximum guidance scale. Used for the classifier free guidance with last frame. fps (`int`, *optional*, defaults to 7): Frames per second.The rate at which the generated images shall be exported to a video after generation. Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training. motion_bucket_id (`int`, *optional*, defaults to 127): The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video. noise_aug_strength (`float`, *optional*, defaults to 0.02): The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion. image_only_indicator (`bool`, *optional*, defaults to False): Whether to treat the inputs as batch of images instead of videos. decode_chunk_size (`int`, *optional*): The number of frames to decode at a time.The higher the chunk size, the higher the temporal consistency between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. device: On which device the pipeline runs on. Returns: [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list of list with the generated frames. Examples: ```py from diffusers import StableVideoDiffusionPipeline from diffusers.utils import load_image, export_to_video pipe = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16") pipe.to("cuda") image = load_image( "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200") image = image.resize((1024, 576)) frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0] export_to_video(frames, "generated.mp4", fps=7) ``` """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor num_frames = num_frames if num_frames is not None else self.unet.config.num_frames decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames # 1. Check inputs. Raise error if not correct self.check_inputs(image, height, width) # 2. Define call parameters if isinstance(image, PIL.Image.Image): batch_size = 1 elif isinstance(image, list): batch_size = len(image) else: batch_size = image.shape[0] device = device if device is not None else self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. self._guidance_scale = max_guidance_scale # 3. Encode input image self.image_encoder.to(device) image_embeddings = self._encode_image(image, device, num_videos_per_prompt, self.do_classifier_free_guidance) self.image_encoder.cpu() # NOTE: Stable Diffusion Video was conditioned on fps - 1, which # is why it is reduced here. fps = fps - 1 # 4. Encode input image using VAE image = self.image_processor.preprocess(image, height=height, width=width).to(device) noise = randn_tensor(image.shape, generator=generator, device=device, dtype=image.dtype) image = image + noise_aug_strength * noise self.vae.to(device) image_latents = self._encode_vae_image( image, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, ) image_latents = image_latents.to(image_embeddings.dtype) self.vae.cpu() # Repeat the image latents for each frame so we can concatenate them with the noise # image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width] image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1) # 5. Get Added Time IDs added_time_ids = self._get_add_time_ids( fps, motion_bucket_id, noise_aug_strength, image_embeddings.dtype, batch_size, num_videos_per_prompt, self.do_classifier_free_guidance, ) added_time_ids = added_time_ids.to(device) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, tile_size, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents, ) latents = latents.repeat(1, num_frames // tile_size + 1, 1, 1, 1)[:, :num_frames] # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) # 7. Prepare guidance scale guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0) guidance_scale = guidance_scale.to(device, latents.dtype) guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1) guidance_scale = _append_dims(guidance_scale, latents.ndim) self._guidance_scale = guidance_scale # 8. Denoising loop self._num_timesteps = len(timesteps) indices = [[0, *range(i + 1, min(i + tile_size, num_frames))] for i in range(0, num_frames - tile_size + 1, tile_size - tile_overlap)] if indices[-1][-1] < num_frames - 1: indices.append([0, *range(num_frames - tile_size + 1, num_frames)]) self.pose_net.to(device) self.unet.to(device) with torch.cuda.device(device): torch.cuda.empty_cache() with self.progress_bar(total=len(timesteps) * len(indices)) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # Concatenate image_latents over channels dimension latent_model_input = torch.cat([latent_model_input, image_latents], dim=2) # predict the noise residual noise_pred = torch.zeros_like(image_latents) noise_pred_cnt = image_latents.new_zeros((num_frames,)) weight = (torch.arange(tile_size, device=device) + 0.5) * 2. / tile_size weight = torch.minimum(weight, 2 - weight) for idx in indices: # classification-free inference pose_latents = self.pose_net(image_pose[idx].to(device)) _noise_pred = self.unet( latent_model_input[:1, idx], t, encoder_hidden_states=image_embeddings[:1], added_time_ids=added_time_ids[:1], pose_latents=None, image_only_indicator=image_only_indicator, return_dict=False, )[0] noise_pred[:1, idx] += _noise_pred * weight[:, None, None, None] # normal inference _noise_pred = self.unet( latent_model_input[1:, idx], t, encoder_hidden_states=image_embeddings[1:], added_time_ids=added_time_ids[1:], pose_latents=pose_latents, image_only_indicator=image_only_indicator, return_dict=False, )[0] noise_pred[1:, idx] += _noise_pred * weight[:, None, None, None] noise_pred_cnt[idx] += weight progress_bar.update() noise_pred.div_(noise_pred_cnt[:, None, None, None]) # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) self.pose_net.cpu() self.unet.cpu() if not output_type == "latent": self.vae.decoder.to(device) frames = self.decode_latents(latents, num_frames, decode_chunk_size) frames = tensor2vid(frames, self.image_processor, output_type=output_type) else: frames = latents self.maybe_free_model_hooks() if not return_dict: return frames return MimicMotionPipelineOutput(frames=frames)