Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""Various utilities for audio convertion (pcm format, sample rate and channels), | |
and volume normalization.""" | |
import sys | |
import typing as tp | |
import julius | |
import torch | |
import torchaudio | |
import numpy as np | |
from .chords import Chords | |
chords = Chords() # initiate object | |
def convert_audio_channels(wav: torch.Tensor, channels: int = 2) -> torch.Tensor: | |
"""Convert audio to the given number of channels. | |
Args: | |
wav (torch.Tensor): Audio wave of shape [B, C, T]. | |
channels (int): Expected number of channels as output. | |
Returns: | |
torch.Tensor: Downmixed or unchanged audio wave [B, C, T]. | |
""" | |
*shape, src_channels, length = wav.shape | |
if src_channels == channels: | |
pass | |
elif channels == 1: | |
# Case 1: | |
# The caller asked 1-channel audio, and the stream has multiple | |
# channels, downmix all channels. | |
wav = wav.mean(dim=-2, keepdim=True) | |
elif src_channels == 1: | |
# Case 2: | |
# The caller asked for multiple channels, but the input file has | |
# a single channel, replicate the audio over all channels. | |
wav = wav.expand(*shape, channels, length) | |
elif src_channels >= channels: | |
# Case 3: | |
# The caller asked for multiple channels, and the input file has | |
# more channels than requested. In that case return the first channels. | |
wav = wav[..., :channels, :] | |
else: | |
# Case 4: What is a reasonable choice here? | |
raise ValueError('The audio file has less channels than requested but is not mono.') | |
return wav | |
def convert_audio(wav: torch.Tensor, from_rate: float, | |
to_rate: float, to_channels: int) -> torch.Tensor: | |
"""Convert audio to new sample rate and number of audio channels.""" | |
wav = julius.resample_frac(wav, int(from_rate), int(to_rate)) | |
wav = convert_audio_channels(wav, to_channels) | |
return wav | |
def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14, | |
loudness_compressor: bool = False, energy_floor: float = 2e-3): | |
"""Normalize an input signal to a user loudness in dB LKFS. | |
Audio loudness is defined according to the ITU-R BS.1770-4 recommendation. | |
Args: | |
wav (torch.Tensor): Input multichannel audio data. | |
sample_rate (int): Sample rate. | |
loudness_headroom_db (float): Target loudness of the output in dB LUFS. | |
loudness_compressor (bool): Uses tanh for soft clipping. | |
energy_floor (float): anything below that RMS level will not be rescaled. | |
Returns: | |
torch.Tensor: Loudness normalized output data. | |
""" | |
energy = wav.pow(2).mean().sqrt().item() | |
if energy < energy_floor: | |
return wav | |
transform = torchaudio.transforms.Loudness(sample_rate) | |
input_loudness_db = transform(wav).item() | |
# calculate the gain needed to scale to the desired loudness level | |
delta_loudness = -loudness_headroom_db - input_loudness_db | |
gain = 10.0 ** (delta_loudness / 20.0) | |
output = gain * wav | |
if loudness_compressor: | |
output = torch.tanh(output) | |
assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt()) | |
return output | |
def _clip_wav(wav: torch.Tensor, log_clipping: bool = False, stem_name: tp.Optional[str] = None) -> None: | |
"""Utility function to clip the audio with logging if specified.""" | |
max_scale = wav.abs().max() | |
if log_clipping and max_scale > 1: | |
clamp_prob = (wav.abs() > 1).float().mean().item() | |
print(f"CLIPPING {stem_name or ''} happening with proba (a bit of clipping is okay):", | |
clamp_prob, "maximum scale: ", max_scale.item(), file=sys.stderr) | |
wav.clamp_(-1, 1) | |
def normalize_audio(wav: torch.Tensor, normalize: bool = True, | |
strategy: str = 'peak', peak_clip_headroom_db: float = 1, | |
rms_headroom_db: float = 18, loudness_headroom_db: float = 14, | |
loudness_compressor: bool = False, log_clipping: bool = False, | |
sample_rate: tp.Optional[int] = None, | |
stem_name: tp.Optional[str] = None) -> torch.Tensor: | |
"""Normalize the audio according to the prescribed strategy (see after). | |
Args: | |
wav (torch.Tensor): Audio data. | |
normalize (bool): if `True` (default), normalizes according to the prescribed | |
strategy (see after). If `False`, the strategy is only used in case clipping | |
would happen. | |
strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak', | |
i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square | |
with extra headroom to avoid clipping. 'clip' just clips. | |
peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy. | |
rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger | |
than the `peak_clip` one to avoid further clipping. | |
loudness_headroom_db (float): Target loudness for loudness normalization. | |
loudness_compressor (bool): If True, uses tanh based soft clipping. | |
log_clipping (bool): If True, basic logging on stderr when clipping still | |
occurs despite strategy (only for 'rms'). | |
sample_rate (int): Sample rate for the audio data (required for loudness). | |
stem_name (str, optional): Stem name for clipping logging. | |
Returns: | |
torch.Tensor: Normalized audio. | |
""" | |
scale_peak = 10 ** (-peak_clip_headroom_db / 20) | |
scale_rms = 10 ** (-rms_headroom_db / 20) | |
if strategy == 'peak': | |
rescaling = (scale_peak / wav.abs().max()) | |
if normalize or rescaling < 1: | |
wav = wav * rescaling | |
elif strategy == 'clip': | |
wav = wav.clamp(-scale_peak, scale_peak) | |
elif strategy == 'rms': | |
mono = wav.mean(dim=0) | |
rescaling = scale_rms / mono.pow(2).mean().sqrt() | |
if normalize or rescaling < 1: | |
wav = wav * rescaling | |
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name) | |
elif strategy == 'loudness': | |
assert sample_rate is not None, "Loudness normalization requires sample rate." | |
wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor) | |
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name) | |
else: | |
assert wav.abs().max() < 1 | |
assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'" | |
return wav | |
def f32_pcm(wav: torch.Tensor) -> torch.Tensor: | |
"""Convert audio to float 32 bits PCM format. | |
""" | |
if wav.dtype.is_floating_point: | |
return wav | |
elif wav.dtype == torch.int16: | |
return wav.float() / 2**15 | |
elif wav.dtype == torch.int32: | |
return wav.float() / 2**31 | |
raise ValueError(f"Unsupported wav dtype: {wav.dtype}") | |
def i16_pcm(wav: torch.Tensor) -> torch.Tensor: | |
"""Convert audio to int 16 bits PCM format. | |
..Warning:: There exist many formula for doing this conversion. None are perfect | |
due to the asymmetry of the int16 range. One either have possible clipping, DC offset, | |
or inconsistencies with f32_pcm. If the given wav doesn't have enough headroom, | |
it is possible that `i16_pcm(f32_pcm)) != Identity`. | |
""" | |
if wav.dtype.is_floating_point: | |
assert wav.abs().max() <= 1 | |
candidate = (wav * 2 ** 15).round() | |
if candidate.max() >= 2 ** 15: # clipping would occur | |
candidate = (wav * (2 ** 15 - 1)).round() | |
return candidate.short() | |
else: | |
assert wav.dtype == torch.int16 | |
return wav | |
def convert_txtchord2chroma_orig(text_chords, bpms, meters, gen_sec): | |
chromas = [] | |
# total_len = int(gen_sec * 44100 / 512) | |
total_len = int(gen_sec * 32000 / 640) | |
for chord, bpm, meter in zip(text_chords, bpms, meters): | |
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640) | |
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048) | |
chroma = torch.zeros([total_len, 12]) | |
count = 0 | |
offset = 0 | |
stext = chord.split(" ") | |
timebin = phr_len // 4 # frames per bar | |
while count < total_len: | |
for tokens in stext: | |
if count >= total_len: | |
break | |
stoken = tokens.split(',') | |
for token in stoken: | |
off_timebin = timebin + offset | |
rounded_timebin = round(off_timebin) | |
offset = off_timebin - rounded_timebin | |
offset = offset/len(stoken) | |
add_step = rounded_timebin//len(stoken) | |
mhot = chords.chord(token) | |
rolled = np.roll(mhot[2], mhot[0]) | |
for i in range(count, count + add_step): | |
if count >= total_len: | |
break | |
chroma[i] = torch.Tensor(rolled) | |
count += 1 | |
chromas.append(chroma) | |
chroma = torch.stack(chromas) | |
return chroma | |
def convert_txtchord2chroma(chord, bpm, meter, gen_sec): | |
total_len = int(gen_sec * 32000 / 640) | |
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640) | |
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048) | |
chroma = torch.zeros([total_len, 12]) | |
count = 0 | |
offset = 0 | |
stext = chord.split(" ") | |
timebin = phr_len // 4 # frames per bar | |
while count < total_len: | |
for tokens in stext: | |
if count >= total_len: | |
break | |
stoken = tokens.split(',') | |
for token in stoken: | |
off_timebin = timebin + offset | |
rounded_timebin = round(off_timebin) | |
offset = off_timebin - rounded_timebin | |
offset = offset/len(stoken) | |
add_step = rounded_timebin//len(stoken) | |
mhot = chords.chord(token) | |
rolled = np.roll(mhot[2], mhot[0]) | |
for i in range(count, count + add_step): | |
if count >= total_len: | |
break | |
chroma[i] = torch.Tensor(rolled) | |
count += 1 | |
return chroma | |
def convert_txtchord2chroma_24(chord, bpm, meter, gen_sec): | |
total_len = int(gen_sec * 32000 / 640) | |
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640) | |
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048) | |
chroma = torch.zeros([total_len, 24]) | |
count = 0 | |
offset = 0 | |
stext = chord.split(" ") | |
timebin = phr_len // 4 # frames per bar | |
while count < total_len: | |
for tokens in stext: | |
if count >= total_len: | |
break | |
stoken = tokens.split(',') | |
for token in stoken: | |
off_timebin = timebin + offset | |
rounded_timebin = round(off_timebin) | |
offset = off_timebin - rounded_timebin | |
offset = offset/len(stoken) | |
add_step = rounded_timebin//len(stoken) | |
root, bass, ivs_vec, _ = chords.chord(token) | |
root_vec = torch.zeros(12) | |
root_vec[root] = 1 | |
final_vec = np.concatenate([root_vec, ivs_vec]) # [C] | |
for i in range(count, count + add_step): | |
if count >= total_len: | |
break | |
chroma[i] = torch.Tensor(final_vec) | |
count += 1 | |
return chroma | |
def get_chroma_chord_from_lab(chord_path, gen_sec): | |
total_len = int(gen_sec * 32000 / 640) | |
feat_hz = 32000/640 | |
intervals = [] | |
labels = [] | |
feat_chord = np.zeros((12, total_len)) # root| ivs | |
with open(chord_path, 'r') as f: | |
for line in f.readlines(): | |
splits = line.split() | |
if len(splits) == 3: | |
st_sec, ed_sec, ctag = splits | |
st_sec = float(st_sec) | |
ed_sec = float(ed_sec) | |
st_frame = int(st_sec*feat_hz) | |
ed_frame = int(ed_sec*feat_hz) | |
mhot = chords.chord(ctag) | |
final_vec = np.roll(mhot[2], mhot[0]) | |
final_vec = final_vec[..., None] # [C, T] | |
feat_chord[:, st_frame:ed_frame] = final_vec | |
feat_chord = torch.from_numpy(feat_chord) | |
return feat_chord | |
def get_chroma_chord_from_text(text_chord, bpm, meter, gen_sec): | |
total_len = int(gen_sec * 32000 / 640) | |
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640) | |
chroma = np.zeros([12, total_len]) | |
count = 0 | |
offset = 0 | |
stext = chord.split(" ") | |
timebin = phr_len // 4 # frames per bar | |
while count < total_len: | |
for tokens in stext: | |
if count >= total_len: | |
break | |
stoken = tokens.split(',') | |
for token in stoken: | |
off_timebin = timebin + offset | |
rounded_timebin = round(off_timebin) | |
offset = off_timebin - rounded_timebin | |
offset = offset/len(stoken) | |
add_step = rounded_timebin//len(stoken) | |
mhot = chords.chord(token) | |
final_vec = np.roll(mhot[2], mhot[0]) | |
final_vec = final_vec[..., None] # [C, T] | |
for i in range(count, count + add_step): | |
if count >= total_len: | |
break | |
chroma[:, i] = final_vec | |
count += 1 | |
feat_chord = torch.from_numpy(feat_chord) | |
return feat_chord | |
def get_beat_from_npy(beat_path, gen_sec): | |
total_len = int(gen_sec * 32000 / 640) | |
beats_np = np.load(beat_path, allow_pickle=True) | |
feat_beats = np.zeros((2, total_len)) | |
meter = int(max(beats_np.T[1])) | |
beat_time = beats_np[:, 0] | |
bar_time = beats_np[np.where(beats_np[:, 1] == 1)[0], 0] | |
beat_frame = [int((t)*feat_hz) for t in beat_time if (t >= 0 and t < duration)] | |
bar_frame =[int((t)*feat_hz) for t in bar_time if (t >= 0 and t < duration)] | |
feat_beats[0, beat_frame] = 1 | |
feat_beats[1, bar_frame] = 1 | |
kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05]) | |
feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel | |
beat_events = feat_beats[0] + feat_beats[1] | |
beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T] | |
bpm = 60 // np.mean([j-i for i, j in zip(beat_time[:-1], beat_time[1:])]) | |
return beat_events, bpm, meter | |
def get_beat_from_bpm(bpm, meter, gen_sec): | |
total_len = int(gen_sec * 32000 / 640) | |
feat_beats = np.zeros((2, total_len)) | |
beat_time_gap = 60 / bpm | |
beat_gap = 60 / bpm * feat_hz | |
beat_time = np.arange(0, duration, beat_time_gap) | |
beat_frame = np.round(np.arange(0, n_frames_feat, beat_gap)).astype(int) | |
if beat_frame[-1] == n_frames_feat: | |
beat_frame = beat_frame[:-1] | |
bar_frame = beat_frame[::meter] | |
feat_beats[0, beat_frame] = 1 | |
feat_beats[1, bar_frame] = 1 | |
kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05]) | |
feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel | |
beat_events = feat_beats[0] + feat_beats[1] | |
beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T] | |
return beat_events, beat_time, meter |