# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Dataset of music tracks with rich metadata. """ from dataclasses import dataclass, field, fields, replace import gzip import json import logging from pathlib import Path import random import typing as tp import pretty_midi import numpy as np import torch import torch.nn.functional as F from .btc_chords import Chords from .info_audio_dataset import ( InfoAudioDataset, AudioInfo, get_keyword_list, get_keyword, get_string ) from ..modules.conditioners import ( ConditioningAttributes, JointEmbedCondition, WavCondition, ChordCondition, BeatCondition ) from ..utils.utils import warn_once logger = logging.getLogger(__name__) CHORDS = Chords() @dataclass class MusicInfo(AudioInfo): """Segment info augmented with music metadata. """ # music-specific metadata title: tp.Optional[str] = None artist: tp.Optional[str] = None # anonymized artist id, used to ensure no overlap between splits key: tp.Optional[str] = None bpm: tp.Optional[float] = None genre: tp.Optional[str] = None moods: tp.Optional[list] = None keywords: tp.Optional[list] = None description: tp.Optional[str] = None name: tp.Optional[str] = None instrument: tp.Optional[str] = None chord: tp.Optional[ChordCondition] = None beat: tp.Optional[BeatCondition] = None # original wav accompanying the metadata self_wav: tp.Optional[WavCondition] = None # dict mapping attributes names to tuple of wav, text and metadata joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict) @property def has_music_meta(self) -> bool: return self.name is not None def to_condition_attributes(self) -> ConditioningAttributes: out = ConditioningAttributes() for _field in fields(self): key, value = _field.name, getattr(self, _field.name) if key == 'self_wav': out.wav[key] = value elif key == 'chord': out.chord[key] = value elif key == 'beat': out.beat[key] = value elif key == 'joint_embed': for embed_attribute, embed_cond in value.items(): out.joint_embed[embed_attribute] = embed_cond else: if isinstance(value, list): value = ' '.join(value) out.text[key] = value return out @staticmethod def attribute_getter(attribute): if attribute == 'bpm': preprocess_func = get_bpm elif attribute == 'key': preprocess_func = get_musical_key elif attribute in ['moods', 'keywords']: preprocess_func = get_keyword_list elif attribute in ['genre', 'name', 'instrument']: preprocess_func = get_keyword elif attribute in ['title', 'artist', 'description']: preprocess_func = get_string else: preprocess_func = None return preprocess_func @classmethod def from_dict(cls, dictionary: dict, fields_required: bool = False): _dictionary: tp.Dict[str, tp.Any] = {} # allow a subset of attributes to not be loaded from the dictionary # these attributes may be populated later post_init_attributes = ['self_wav', 'chord', 'beat', 'joint_embed'] optional_fields = ['keywords'] for _field in fields(cls): if _field.name in post_init_attributes: continue elif _field.name not in dictionary: if fields_required and _field.name not in optional_fields: raise KeyError(f"Unexpected missing key: {_field.name}") else: preprocess_func: tp.Optional[tp.Callable] = cls.attribute_getter(_field.name) value = dictionary[_field.name] if preprocess_func: value = preprocess_func(value) _dictionary[_field.name] = value return cls(**_dictionary) def augment_music_info_description(music_info: MusicInfo, merge_text_p: float = 0., drop_desc_p: float = 0., drop_other_p: float = 0.) -> MusicInfo: """Augment MusicInfo description with additional metadata fields and potential dropout. Additional textual attributes are added given probability 'merge_text_conditions_p' and the original textual description is dropped from the augmented description given probability drop_desc_p. Args: music_info (MusicInfo): The music metadata to augment. merge_text_p (float): Probability of merging additional metadata to the description. If provided value is 0, then no merging is performed. drop_desc_p (float): Probability of dropping the original description on text merge. if provided value is 0, then no drop out is performed. drop_other_p (float): Probability of dropping the other fields used for text augmentation. Returns: MusicInfo: The MusicInfo with augmented textual description. """ def is_valid_field(field_name: str, field_value: tp.Any) -> bool: valid_field_name = field_name in ['key', 'bpm', 'genre', 'moods', 'instrument', 'keywords'] valid_field_value = field_value is not None and isinstance(field_value, (int, float, str, list)) keep_field = random.uniform(0, 1) < drop_other_p return valid_field_name and valid_field_value and keep_field def process_value(v: tp.Any) -> str: if isinstance(v, (int, float, str)): return str(v) if isinstance(v, list): return ", ".join(v) else: raise ValueError(f"Unknown type for text value! ({type(v), v})") description = music_info.description metadata_text = "" # metadata_text = "rock style music, consistent rhythm, catchy song." if random.uniform(0, 1) < merge_text_p: meta_pairs = [f'{_field.name}: {process_value(getattr(music_info, _field.name))}' for _field in fields(music_info) if is_valid_field(_field.name, getattr(music_info, _field.name))] random.shuffle(meta_pairs) metadata_text = ". ".join(meta_pairs) description = description if not random.uniform(0, 1) < drop_desc_p else None logger.debug(f"Applying text augmentation on MMI info. description: {description}, metadata: {metadata_text}") if description is None: description = metadata_text if len(metadata_text) > 1 else None else: description = ". ".join([description.rstrip('.'), metadata_text]) description = description.strip() if description else None music_info = replace(music_info) music_info.description = description return music_info class Paraphraser: def __init__(self, paraphrase_source: tp.Union[str, Path], paraphrase_p: float = 0.): self.paraphrase_p = paraphrase_p open_fn = gzip.open if str(paraphrase_source).lower().endswith('.gz') else open with open_fn(paraphrase_source, 'rb') as f: # type: ignore self.paraphrase_source = json.loads(f.read()) logger.info(f"loaded paraphrasing source from: {paraphrase_source}") def sample_paraphrase(self, audio_path: str, description: str): if random.random() >= self.paraphrase_p: return description info_path = Path(audio_path).with_suffix('.json') if info_path not in self.paraphrase_source: warn_once(logger, f"{info_path} not in paraphrase source!") return description new_desc = random.choice(self.paraphrase_source[info_path]) logger.debug(f"{description} -> {new_desc}") return new_desc class MusicDataset(InfoAudioDataset): """Music dataset is an AudioDataset with music-related metadata. Args: info_fields_required (bool): Whether to enforce having required fields. merge_text_p (float): Probability of merging additional metadata to the description. drop_desc_p (float): Probability of dropping the original description on text merge. drop_other_p (float): Probability of dropping the other fields used for text augmentation. joint_embed_attributes (list[str]): A list of attributes for which joint embedding metadata is returned. paraphrase_source (str, optional): Path to the .json or .json.gz file containing the paraphrases for the description. The json should be a dict with keys are the original info path (e.g. track_path.json) and each value is a list of possible paraphrased. paraphrase_p (float): probability of taking a paraphrase. See `audiocraft.data.info_audio_dataset.InfoAudioDataset` for full initialization arguments. """ def __init__(self, *args, info_fields_required: bool = True, merge_text_p: float = 0., drop_desc_p: float = 0., drop_other_p: float = 0., joint_embed_attributes: tp.List[str] = [], paraphrase_source: tp.Optional[str] = None, paraphrase_p: float = 0, **kwargs): kwargs['return_info'] = True # We require the info for each song of the dataset. super().__init__(*args, **kwargs) self.info_fields_required = info_fields_required self.merge_text_p = merge_text_p self.drop_desc_p = drop_desc_p self.drop_other_p = drop_other_p self.joint_embed_attributes = joint_embed_attributes self.paraphraser = None self.downsample_rate = 640 self.sr = 32000 if paraphrase_source is not None: self.paraphraser = Paraphraser(paraphrase_source, paraphrase_p) def __getitem__(self, index): wav, info = super().__getitem__(index) # wav_seg and seg_info info_data = info.to_dict() # unpack info target_sr = self.sr n_frames_wave = info.n_frames n_frames_feat = int(info.n_frames // self.downsample_rate) music_info_path = str(info.meta.path).replace('no_vocal.wav', 'tags.json') chord_path = str(info.meta.path).replace('no_vocal.wav', 'chord.lab') beats_path = str(info.meta.path).replace('no_vocal.wav', 'beats.npy') if all([ not Path(music_info_path).exists(), not Path(beats_path).exists(), not Path(chord_path).exists(), ]): raise FileNotFoundError ### music info with open(music_info_path, 'r') as json_file: music_data = json.load(json_file) music_data.update(info_data) music_info = MusicInfo.from_dict(music_data, fields_required=self.info_fields_required) if self.paraphraser is not None: music_info.description = self.paraphraser.sample(music_info.meta.path, music_info.description) if self.merge_text_p: music_info = augment_music_info_description( music_info, self.merge_text_p, self.drop_desc_p, self.drop_other_p) ### load features to tensors ### feat_hz = target_sr/self.downsample_rate ## beat&bar: 2 x T feat_beats = np.zeros((2, n_frames_feat)) beats_np = np.load(beats_path) beat_time = beats_np[:, 0] bar_time = beats_np[np.where(beats_np[:, 1] == 1)[0], 0] beat_frame = [ int((t-info.seek_time)*feat_hz) for t in beat_time if (t >= info.seek_time and t < info.seek_time + self.segment_duration)] bar_frame =[ int((t-info.seek_time)*feat_hz) for t in bar_time if (t >= info.seek_time and t < info.seek_time + self.segment_duration)] feat_beats[0, beat_frame] = 1 feat_beats[1, bar_frame] = 1 kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05]) feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel beat_events = feat_beats[0] + feat_beats[1] beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T] music_info.beat = BeatCondition(beat=beat_events[None], length=torch.tensor([n_frames_feat]), bpm=[music_data["bpm"]], path=[music_info_path], seek_frame=[info.seek_time*target_sr//self.downsample_rate]) ## chord: 12 x T feat_chord = np.zeros((12, n_frames_feat)) # root| ivs with open(chord_path, 'r') as f: for line in f.readlines(): splits = line.split() if len(splits) == 3: st_sec, ed_sec, ctag = splits st_sec = float(st_sec) - info.seek_time ed_sec = float(ed_sec) - info.seek_time st_frame = int(st_sec*feat_hz) ed_frame = int(ed_sec*feat_hz) # 12 chorma mhot = CHORDS.chord(ctag) final_vec = np.roll(mhot[2], mhot[0]) final_vec = final_vec[..., None] feat_chord[:, st_frame:ed_frame] = final_vec feat_chord = torch.from_numpy(feat_chord) music_info.chord = ChordCondition( chord=feat_chord[None], length=torch.tensor([n_frames_feat]), bpm=[music_data["bpm"]], path=[chord_path], seek_frame=[info.seek_time*self.sr//self.downsample_rate]) music_info.self_wav = WavCondition( wav=wav[None], length=torch.tensor([info.n_frames]), sample_rate=[info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time]) for att in self.joint_embed_attributes: att_value = getattr(music_info, att) joint_embed_cond = JointEmbedCondition( wav[None], [att_value], torch.tensor([info.n_frames]), sample_rate=[info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time]) music_info.joint_embed[att] = joint_embed_cond return wav, music_info def get_musical_key(value: tp.Optional[str]) -> tp.Optional[str]: """Preprocess key keywords, discarding them if there are multiple key defined.""" if value is None or (not isinstance(value, str)) or len(value) == 0 or value == 'None': return None elif ',' in value: # For now, we discard when multiple keys are defined separated with comas return None else: return value.strip().lower() def get_bpm(value: tp.Optional[str]) -> tp.Optional[float]: """Preprocess to a float.""" if value is None: return None try: return float(value) except ValueError: return None