ReNO / main.py
fffiloni's picture
vae slicing and tiling for flux
9aa8a41 verified
import json
import logging
import os
import blobfile as bf
import torch
import gc
from datasets import load_dataset
from pytorch_lightning import seed_everything
from tqdm import tqdm
from arguments import parse_args
from models import get_model, get_multi_apply_fn
from rewards import get_reward_losses
from training import LatentNoiseTrainer, get_optimizer
def find_and_move_object_to_cpu():
for obj in gc.get_objects():
try:
# Check if the object is a PyTorch model
if isinstance(obj, torch.nn.Module):
# Check if any parameter of the model is on CUDA
if any(param.is_cuda for param in obj.parameters()):
print(f"Found PyTorch model on CUDA: {type(obj).__name__}")
# Move the model to CPU
obj.to('cpu')
print(f"Moved {type(obj).__name__} to CPU.")
# Optionally check if buffers are on CUDA
if any(buf.is_cuda for buf in obj.buffers()):
print(f"Found buffer on CUDA in {type(obj).__name__}")
obj.to('cpu')
print(f"Moved buffers of {type(obj).__name__} to CPU.")
except Exception as e:
# Handle any exceptions if obj is not a torch model
pass
def clear_gpu():
"""Clear GPU memory by removing tensors, freeing cache, and moving data to CPU."""
# List memory usage before clearing
print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
# Move any bound tensors back to CPU if needed
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize() # Ensure that all operations are completed
print("GPU memory cleared.")
print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
def unload_previous_model_if_needed(loaded_model_setup):
# Check if any GPU memory is being used even when loaded_model_setup is None
if loaded_model_setup is None:
if torch.cuda.is_available() and torch.cuda.memory_allocated() > 0:
print("Unknown model or tensors are still loaded on the GPU. Clearing GPU memory.")
# Call the function to find and move object to CPU
find_and_move_object_to_cpu()
return
"""Unload the current model from the GPU and free resources if a new model is being loaded."""
print("Unloading previous model from GPU to free memory.")
"""
previous_model = loaded_model_setup[7] # Assuming pipe is at position [7] in the setup
# If the model is 'hyper-sd', ensure its components are moved to CPU before deletion
if loaded_model_setup[0].model == "hyper-sd":
if previous_model.device == torch.device('cuda'):
if hasattr(previous_model, 'unet'):
print("Moving UNet back to CPU.")
previous_model.unet.to('cpu') # Move unet to CPU
print("Moving entire pipeline back to CPU.")
previous_model.to('cpu') # Move the entire pipeline (pipe) to CPU
# For other models, use a generic 'to' function if available
elif hasattr(previous_model, 'to') and loaded_model_setup[0].model != "flux":
if previous_model.device == torch.device('cuda'):
print("Moving previous model back to CPU.")
previous_model.to('cpu') # Move model to CPU to free GPU memory
# Delete the reference to the model to allow garbage collection
del previous_model
"""
# Call the function to find and move object to CPU
find_and_move_object_to_cpu()
# Clear GPU memory
clear_gpu() # Ensure that this function properly clears memory (e.g., torch.cuda.empty_cache())
def setup(args, loaded_model_setup=None):
seed_everything(args.seed)
bf.makedirs(f"{args.save_dir}/logs/{args.task}")
# Set up logging and name settings
logger = logging.getLogger()
logger.handlers.clear() # Clear existing handlers
settings = (
f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}"
f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}"
f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}"
f"_reg{args.reg_weight if args.enable_reg else '0'}"
f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}"
f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}"
f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}"
f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}"
f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}"
)
file_stream = open(f"{args.save_dir}/logs/{args.task}/{settings}.txt", "w")
handler = logging.StreamHandler(file_stream)
formatter = logging.Formatter("%(asctime)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel("INFO")
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(formatter)
logger.addHandler(consoleHandler)
logging.info(args)
if args.device_id is not None:
logging.info(f"Using CUDA device {args.device_id}")
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.device_id
device = torch.device("cuda")
dtype = torch.float16 if args.dtype == "float16" else torch.float32
# If args.model is the same as the one in loaded_model_setup, reuse the trainer and pipe
if loaded_model_setup and args.model == loaded_model_setup[0].model:
print(f"Reusing model {args.model} from loaded setup.")
trainer = loaded_model_setup[1] # Trainer is at position 1 in loaded_model_setup
# Update trainer with the new arguments
trainer.n_iters = args.n_iters
trainer.n_inference_steps = args.n_inference_steps
trainer.seed = args.seed
trainer.save_all_images = args.save_all_images
trainer.no_optim = args.no_optim
trainer.regularize = args.enable_reg
trainer.regularization_weight = args.reg_weight
trainer.grad_clip = args.grad_clip
trainer.log_metrics = args.task == "single" or not args.no_optim
trainer.imageselect = args.imageselect
# Get latents (this step is still required)
if args.model == "flux":
shape = (1, 16 * 64, 64)
elif args.model != "pixart":
height = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor
width = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor
shape = (
1,
trainer.model.unet.in_channels,
height // trainer.model.vae_scale_factor,
width // trainer.model.vae_scale_factor,
)
else:
height = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor
width = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor
shape = (
1,
trainer.model.transformer.config.in_channels,
height // trainer.model.vae_scale_factor,
width // trainer.model.vae_scale_factor,
)
pipe = loaded_model_setup[7]
enable_grad = not args.no_optim
return args, trainer, device, dtype, shape, enable_grad, settings, pipe
# Unload previous model and clear GPU resources
unload_previous_model_if_needed(loaded_model_setup)
# Proceed with full model loading if args.model is different
print(f"Loading new model: {args.model}")
# Get reward losses
reward_losses = get_reward_losses(args, dtype, device, args.cache_dir)
# Get model and noise trainer
pipe = get_model(
args.model, dtype, device, args.cache_dir, args.memsave, args.cpu_offloading
)
# Final memory cleanup after model loading
torch.cuda.empty_cache()
trainer = LatentNoiseTrainer(
reward_losses=reward_losses,
model=pipe,
n_iters=args.n_iters,
n_inference_steps=args.n_inference_steps,
seed=args.seed,
save_all_images=args.save_all_images,
device=device if not args.cpu_offloading else 'cpu', # Use CPU if offloading is enabled
no_optim=args.no_optim,
regularize=args.enable_reg,
regularization_weight=args.reg_weight,
grad_clip=args.grad_clip,
log_metrics=args.task == "single" or not args.no_optim,
imageselect=args.imageselect,
)
# Create latents
if args.model == "flux":
shape = (1, 16 * 64, 64)
elif args.model != "pixart":
height = pipe.unet.config.sample_size * pipe.vae_scale_factor
width = pipe.unet.config.sample_size * pipe.vae_scale_factor
shape = (
1,
pipe.unet.in_channels,
height // pipe.vae_scale_factor,
width // pipe.vae_scale_factor,
)
else:
height = pipe.transformer.config.sample_size * pipe.vae_scale_factor
width = pipe.transformer.config.sample_size * pipe.vae_scale_factor
shape = (
1,
pipe.transformer.config.in_channels,
height // pipe.vae_scale_factor,
width // pipe.vae_scale_factor,
)
enable_grad = not args.no_optim
# Final memory cleanup
torch.cuda.empty_cache() # Free up cached memory
return args, trainer, device, dtype, shape, enable_grad, settings, pipe
def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe, progress_callback=None):
if args.task == "single":
# Attempt to move the model to GPU if model is not Flux
if args.model != "flux":
if args.model == "hyper-sd":
if pipe.device != torch.device('cuda'):
# Transfer UNet to GPU
pipe.unet = pipe.unet.to(device, dtype)
# Transfer the whole pipe to GPU, if required (optional)
pipe = pipe.to(device, dtype)
# upcast vae
pipe.vae = pipe.vae.to(dtype=torch.float32)
elif args.model == "pixart":
if pipe.device != torch.device('cuda'):
pipe.to(device)
else:
if pipe.device != torch.device('cuda'):
pipe.to(device, dtype)
else:
if args.cpu_offloading:
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(torch.float16) # casting here instead of in the pipeline constructor because doing so in the constructor loads all models into CPU memory at once
if args.enable_multi_apply:
multi_apply_fn = get_multi_apply_fn(
model_type=args.multi_step_model,
seed=args.seed,
pipe=pipe,
cache_dir=args.cache_dir,
device=device if not args.cpu_offloading else 'cpu',
dtype=dtype,
)
else:
multi_apply_fn = None
torch.cuda.empty_cache() # Free up cached memory
print(f"PIPE:{pipe}")
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
os.makedirs(f"{save_dir}", exist_ok=True)
init_image, best_image, total_init_rewards, total_best_rewards = trainer.train(
latents, args.prompt, optimizer, save_dir, multi_apply_fn, progress_callback=progress_callback
)
best_image.save(f"{save_dir}/best_image.png")
#init_image.save(f"{save_dir}/init_image.png")
clear_gpu()
elif args.task == "example-prompts":
fo = open("assets/example_prompts.txt", "r")
prompts = fo.readlines()
fo.close()
for i, prompt in tqdm(enumerate(prompts)):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = prompt.strip()
name = f"{i:03d}_{prompt[:150]}.png"
save_dir = f"{args.save_dir}/{args.task}/{settings}/{name}"
os.makedirs(save_dir, exist_ok=True)
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, save_dir, multi_apply_fn
)
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
best_image.save(f"{save_dir}/best_image.png")
init_image.save(f"{save_dir}/init_image.png")
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(prompts)
total_init_rewards[k] /= len(prompts)
# save results to directory
with open(f"{args.save_dir}/example-prompts/{settings}/results.txt", "w") as f:
f.write(
f"Mean initial all rewards: {total_init_rewards}\n"
f"Mean best all rewards: {total_best_rewards}\n"
)
elif args.task == "t2i-compbench":
prompt_list_file = f"../T2I-CompBench/examples/dataset/{args.prompt}.txt"
fo = open(prompt_list_file, "r")
prompts = fo.readlines()
fo.close()
os.makedirs(f"{args.save_dir}/{args.task}/{settings}/samples", exist_ok=True)
for i, prompt in tqdm(enumerate(prompts)):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = prompt.strip()
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, None, multi_apply_fn
)
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
name = f"{prompt}_{i:06d}.png"
best_image.save(f"{args.save_dir}/{args.task}/{settings}/samples/{name}")
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(prompts)
total_init_rewards[k] /= len(prompts)
elif args.task == "parti-prompts":
parti_dataset = load_dataset("nateraw/parti-prompts", split="train")
total_reward_diff = 0.0
total_best_reward = 0.0
total_init_reward = 0.0
total_improved_samples = 0
for index, sample in enumerate(parti_dataset):
os.makedirs(
f"{args.save_dir}/{args.task}/{settings}/{index}", exist_ok=True
)
prompt = sample["Prompt"]
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, multi_apply_fn
)
best_image.save(
f"{args.save_dir}/{args.task}/{settings}/{index}/best_image.png"
)
open(
f"{args.save_dir}/{args.task}/{settings}/{index}/prompt.txt", "w"
).write(
f"{prompt} \n Initial Rewards: {init_rewards} \n Best Rewards: {best_rewards}"
)
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
initial_reward = init_rewards[args.benchmark_reward]
best_reward = best_rewards[args.benchmark_reward]
total_reward_diff += best_reward - initial_reward
total_best_reward += best_reward
total_init_reward += initial_reward
if best_reward < initial_reward:
total_improved_samples += 1
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
improvement_percentage = total_improved_samples / parti_dataset.num_rows
mean_best_reward = total_best_reward / parti_dataset.num_rows
mean_init_reward = total_init_reward / parti_dataset.num_rows
mean_reward_diff = total_reward_diff / parti_dataset.num_rows
logging.info(
f"Improvement percentage: {improvement_percentage:.4f}, "
f"mean initial reward: {mean_init_reward:.4f}, "
f"mean best reward: {mean_best_reward:.4f}, "
f"mean reward diff: {mean_reward_diff:.4f}"
)
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(parti_dataset)
total_init_rewards[k] /= len(parti_dataset)
# save results
os.makedirs(f"{args.save_dir}/parti-prompts/{settings}", exist_ok=True)
with open(f"{args.save_dir}/parti-prompts/{settings}/results.txt", "w") as f:
f.write(
f"Mean improvement: {improvement_percentage:.4f}, "
f"mean initial reward: {mean_init_reward:.4f}, "
f"mean best reward: {mean_best_reward:.4f}, "
f"mean reward diff: {mean_reward_diff:.4f}\n"
f"Mean initial all rewards: {total_init_rewards}\n"
f"Mean best all rewards: {total_best_rewards}"
)
elif args.task == "geneval":
prompt_list_file = "../geneval/prompts/evaluation_metadata.jsonl"
with open(prompt_list_file) as fp:
metadatas = [json.loads(line) for line in fp]
outdir = f"{args.save_dir}/{args.task}/{settings}"
for index, metadata in enumerate(metadatas):
# Get new latents and optimizer
init_latents = torch.randn(shape, device=device, dtype=dtype)
latents = torch.nn.Parameter(init_latents, requires_grad=True)
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
prompt = metadata["prompt"]
init_image, best_image, init_rewards, best_rewards = trainer.train(
latents, prompt, optimizer, None, multi_apply_fn
)
logging.info(f"Initial rewards: {init_rewards}")
logging.info(f"Best rewards: {best_rewards}")
outpath = f"{outdir}/{index:0>5}"
os.makedirs(f"{outpath}/samples", exist_ok=True)
with open(f"{outpath}/metadata.jsonl", "w") as fp:
json.dump(metadata, fp)
best_image.save(f"{outpath}/samples/{args.seed:05}.png")
if i == 0:
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
for k in best_rewards.keys():
total_best_rewards[k] += best_rewards[k]
total_init_rewards[k] += init_rewards[k]
for k in total_best_rewards.keys():
total_best_rewards[k] /= len(parti_dataset)
total_init_rewards[k] /= len(parti_dataset)
else:
raise ValueError(f"Unknown task {args.task}")
# log total rewards
logging.info(f"Mean initial rewards: {total_init_rewards}")
logging.info(f"Mean best rewards: {total_best_rewards}")
def main():
args = parse_args()
args, trainer, device, dtype, shape, enable_grad, settings, pipe = setup(args, loaded_model_setup=None)
execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe)
if __name__ == "__main__":
main()