ReNO / models /RewardStableDiffusionXL.py
fffiloni's picture
refactoring for Flux
dd8f929
from typing import List, Optional, Union
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
retrieve_timesteps,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
def freeze_params(params):
for param in params:
param.requires_grad = False
class RewardStableDiffusionXL(StableDiffusionXLPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
image_encoder: CLIPVisionModelWithProjection = None,
feature_extractor: CLIPImageProcessor = None,
force_zeros_for_empty_prompt: bool = True,
add_watermarker: bool = False,
is_hyper: bool = False,
memsave: bool = False,
):
super().__init__(
vae,
text_encoder,
text_encoder_2,
tokenizer,
tokenizer_2,
unet,
scheduler,
image_encoder,
feature_extractor,
force_zeros_for_empty_prompt,
add_watermarker,
)
# optionally enable memsave_torch
if memsave:
import memsave_torch.nn
self.vae = memsave_torch.nn.convert_to_memory_saving(self.vae)
self.unet = memsave_torch.nn.convert_to_memory_saving(self.unet)
self.text_encoder = memsave_torch.nn.convert_to_memory_saving(
self.text_encoder
)
self.text_encoder_2 = memsave_torch.nn.convert_to_memory_saving(
self.text_encoder_2
)
# enable checkpointing
self.unet.enable_gradient_checkpointing()
self.vae.enable_gradient_checkpointing()
self.text_encoder.eval()
self.text_encoder_2.eval()
self.unet.eval()
self.vae.eval()
self.is_hyper = is_hyper
# freeze diffusion parameters
freeze_params(self.vae.parameters())
freeze_params(self.unet.parameters())
freeze_params(self.text_encoder.parameters())
freeze_params(self.text_encoder_2.parameters())
def decode_latents_tensors(self, latents):
latents = latents / self.vae.config.scaling_factor
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
return image
def apply(
self,
latents: torch.Tensor,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 1,
guidance_scale: float = 0.0,
timesteps: List[int] = None,
denoising_end: Optional[float] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
) -> torch.Tensor:
if self.is_hyper:
timesteps = [800]
# 0. Default height and width to unet
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = (height, width)
target_size = (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
callback_steps=1,
)
# 2. Define call parameters
self._guidance_scale = guidance_scale
self._clip_skip = 0
self._cross_attention_kwargs = None
self._denoising_end = denoising_end
self._interrupt = False
# 2. Define call parameters
batch_size = 1
device = self._execution_device
# 3. Encode input prompt
lora_scale = (
self.cross_attention_kwargs.get("scale", None)
if self.cross_attention_kwargs is not None
else None
)
prompt_embeds = None
negative_prompt_embeds = None
pooled_prompt_embeds = None
negative_pooled_prompt_embeds = None
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps
)
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids = self._get_add_time_ids(
original_size,
(0, 0),
target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
negative_add_time_ids = add_time_ids
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat(
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(
batch_size * num_images_per_prompt, 1
)
# 8. Denoising loop
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0
)
# 8.1 Apply denoising_end
if (
self.denoising_end is not None
and isinstance(self.denoising_end, float)
and self.denoising_end > 0
and self.denoising_end < 1
):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
)
timesteps = timesteps[:num_inference_steps]
# 9. Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
batch_size * num_images_per_prompt
)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
self._num_timesteps = len(timesteps)
# 8. Denoising loop
# 8.1 Apply denoising_end
if (
self.denoising_end is not None
and isinstance(self.denoising_end, float)
and self.denoising_end > 0
and self.denoising_end < 1
):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
)
timesteps = timesteps[:num_inference_steps]
# 9. Optionally get Guidance Scale Embedding
timestep_cond = None
self._num_timesteps = len(timesteps)
for i, t in enumerate(timesteps):
if self._interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2)
if self.do_classifier_free_guidance
else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids,
}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
)[0]
if self.is_hyper:
latents = latents.to(torch.float32)
image = self.decode_latents_tensors(latents)
image = image.to(torch.float16)
else:
image = self.decode_latents_tensors(latents)
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
# Offload all models
self.maybe_free_model_hooks()
return image