Spaces:
Sleeping
Sleeping
Do not assign gpu directly
Browse files- models/utils.py +8 -8
models/utils.py
CHANGED
@@ -36,7 +36,7 @@ def get_model(
|
|
36 |
cache_dir=cache_dir,
|
37 |
memsave=memsave,
|
38 |
)
|
39 |
-
pipe = pipe.to(device, dtype)
|
40 |
elif model_name == "sdxl-turbo":
|
41 |
vae = AutoencoderKL.from_pretrained(
|
42 |
"madebyollin/sdxl-vae-fp16-fix",
|
@@ -55,7 +55,7 @@ def get_model(
|
|
55 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
56 |
pipe.scheduler.config, timestep_spacing="trailing"
|
57 |
)
|
58 |
-
pipe = pipe.to(device, dtype)
|
59 |
elif model_name == "pixart":
|
60 |
pipe = RewardPixartPipeline.from_pretrained(
|
61 |
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
@@ -80,7 +80,7 @@ def get_model(
|
|
80 |
pipe.transformer.eval()
|
81 |
freeze_params(pipe.transformer.parameters())
|
82 |
pipe.transformer.enable_gradient_checkpointing()
|
83 |
-
pipe = pipe.to(device)
|
84 |
elif model_name == "hyper-sd":
|
85 |
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
86 |
repo_name = "ByteDance/Hyper-SD"
|
@@ -108,20 +108,20 @@ def get_model(
|
|
108 |
pipe.scheduler = LCMScheduler.from_config(
|
109 |
pipe.scheduler.config, cache_dir=cache_dir
|
110 |
)
|
111 |
-
pipe = pipe.to(device, dtype)
|
112 |
# upcast vae
|
113 |
pipe.vae = pipe.vae.to(dtype=torch.float32)
|
114 |
elif model_name == "flux":
|
115 |
pipe = RewardFluxPipeline.from_pretrained(
|
116 |
"black-forest-labs/FLUX.1-schnell",
|
117 |
-
torch_dtype=torch.
|
118 |
cache_dir=cache_dir,
|
119 |
)
|
120 |
-
pipe.to(device, dtype)
|
121 |
else:
|
122 |
raise ValueError(f"Unknown model name: {model_name}")
|
123 |
-
if enable_sequential_cpu_offload:
|
124 |
-
|
125 |
return pipe
|
126 |
|
127 |
|
|
|
36 |
cache_dir=cache_dir,
|
37 |
memsave=memsave,
|
38 |
)
|
39 |
+
#pipe = pipe.to(device, dtype)
|
40 |
elif model_name == "sdxl-turbo":
|
41 |
vae = AutoencoderKL.from_pretrained(
|
42 |
"madebyollin/sdxl-vae-fp16-fix",
|
|
|
55 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
56 |
pipe.scheduler.config, timestep_spacing="trailing"
|
57 |
)
|
58 |
+
#pipe = pipe.to(device, dtype)
|
59 |
elif model_name == "pixart":
|
60 |
pipe = RewardPixartPipeline.from_pretrained(
|
61 |
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
|
|
80 |
pipe.transformer.eval()
|
81 |
freeze_params(pipe.transformer.parameters())
|
82 |
pipe.transformer.enable_gradient_checkpointing()
|
83 |
+
#pipe = pipe.to(device)
|
84 |
elif model_name == "hyper-sd":
|
85 |
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
86 |
repo_name = "ByteDance/Hyper-SD"
|
|
|
108 |
pipe.scheduler = LCMScheduler.from_config(
|
109 |
pipe.scheduler.config, cache_dir=cache_dir
|
110 |
)
|
111 |
+
#pipe = pipe.to(device, dtype)
|
112 |
# upcast vae
|
113 |
pipe.vae = pipe.vae.to(dtype=torch.float32)
|
114 |
elif model_name == "flux":
|
115 |
pipe = RewardFluxPipeline.from_pretrained(
|
116 |
"black-forest-labs/FLUX.1-schnell",
|
117 |
+
torch_dtype=torch.float16,
|
118 |
cache_dir=cache_dir,
|
119 |
)
|
120 |
+
#pipe.to(device, dtype)
|
121 |
else:
|
122 |
raise ValueError(f"Unknown model name: {model_name}")
|
123 |
+
#if enable_sequential_cpu_offload:
|
124 |
+
# pipe.enable_sequential_cpu_offload()
|
125 |
return pipe
|
126 |
|
127 |
|