Spaces:
Sleeping
Sleeping
GPU management optimizations
Browse files
app.py
CHANGED
@@ -1,372 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import gc
|
3 |
-
|
4 |
-
from
|
|
|
|
|
5 |
from arguments import parse_args
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
9 |
-
import time
|
10 |
-
import threading
|
11 |
-
import argparse
|
12 |
-
|
13 |
-
def list_iter_images(save_dir):
|
14 |
-
# Specify only PNG images
|
15 |
-
image_extension = 'png'
|
16 |
-
|
17 |
-
# Create a list to store the image file paths
|
18 |
-
image_paths = []
|
19 |
-
|
20 |
-
# Use glob to find all PNG image files
|
21 |
-
all_images = glob.glob(os.path.join(save_dir, f'*.{image_extension}'))
|
22 |
-
|
23 |
-
# Filter out 'best_image.png'
|
24 |
-
image_paths = [img for img in all_images if os.path.basename(img) != 'best_image.png']
|
25 |
-
|
26 |
-
return image_paths
|
27 |
-
|
28 |
-
def clean_dir(save_dir):
|
29 |
-
# Check if the directory exists
|
30 |
-
if os.path.exists(save_dir):
|
31 |
-
# Check if the directory contains any files
|
32 |
-
if len(os.listdir(save_dir)) > 0:
|
33 |
-
# If it contains files, delete all files in the directory
|
34 |
-
for filename in os.listdir(save_dir):
|
35 |
-
file_path = os.path.join(save_dir, filename)
|
36 |
-
try:
|
37 |
-
if os.path.isfile(file_path) or os.path.islink(file_path):
|
38 |
-
os.unlink(file_path) # Remove file or symbolic link
|
39 |
-
elif os.path.isdir(file_path):
|
40 |
-
shutil.rmtree(file_path) # Remove directory and its contents
|
41 |
-
except Exception as e:
|
42 |
-
print(f"Failed to delete {file_path}. Reason: {e}")
|
43 |
-
print(f"All files in {save_dir} have been deleted.")
|
44 |
-
else:
|
45 |
-
print(f"{save_dir} exists but is empty.")
|
46 |
-
else:
|
47 |
-
print(f"{save_dir} does not exist.")
|
48 |
|
49 |
-
def start_over(gallery_state):
|
50 |
-
torch.cuda.empty_cache() # Free up cached memory
|
51 |
-
gc.collect()
|
52 |
-
if gallery_state is not None:
|
53 |
-
gallery_state = None
|
54 |
-
return gallery_state, None, None, gr.update(visible=False)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
if prompt is None or prompt == "":
|
60 |
-
raise gr.Error("You forgot to provide a prompt !")
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
torch.cuda.empty_cache() # Free up cached memory
|
66 |
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
args.disable_pickscore = False
|
90 |
-
args.pickscore_weighting = pcks_w
|
91 |
|
92 |
-
if
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
#
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
return f"Failed to load {model} model: {e}. You can try again, as it usually finally loads on the second try :)", None
|
128 |
-
|
129 |
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
gc.collect()
|
133 |
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
|
|
146 |
|
147 |
-
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
|
148 |
-
clean_dir(save_dir)
|
149 |
|
150 |
-
try:
|
151 |
-
torch.cuda.empty_cache() # Free up cached memory
|
152 |
-
gc.collect()
|
153 |
-
steps_completed = []
|
154 |
-
result_container = {"best_image": None, "total_init_rewards": None, "total_best_rewards": None}
|
155 |
-
error_status = {"error_occurred": False} # Shared dictionary to track error status
|
156 |
-
thread_status = {"running": False} # Track whether a thread is already running
|
157 |
-
|
158 |
-
def progress_callback(step):
|
159 |
-
# Limit redundant prints by checking the step number
|
160 |
-
if not steps_completed or step > steps_completed[-1]:
|
161 |
-
steps_completed.append(step)
|
162 |
-
print(f"Progress: Step {step} completed.")
|
163 |
-
|
164 |
-
def run_main():
|
165 |
-
thread_status["running"] = True # Mark thread as running
|
166 |
-
try:
|
167 |
-
execute_task(
|
168 |
-
args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings, progress_callback
|
169 |
-
)
|
170 |
-
except torch.cuda.OutOfMemoryError as e:
|
171 |
-
print(f"CUDA Out of Memory Error: {e}")
|
172 |
-
error_status["error_occurred"] = True
|
173 |
-
except RuntimeError as e:
|
174 |
-
if 'out of memory' in str(e):
|
175 |
-
print(f"Runtime Error: {e}")
|
176 |
-
error_status["error_occurred"] = True
|
177 |
-
else:
|
178 |
-
raise
|
179 |
-
finally:
|
180 |
-
thread_status["running"] = False # Mark thread as completed
|
181 |
-
|
182 |
-
if not thread_status["running"]: # Ensure no other thread is running
|
183 |
-
main_thread = threading.Thread(target=run_main)
|
184 |
-
main_thread.start()
|
185 |
-
|
186 |
-
last_step_yielded = 0
|
187 |
-
while main_thread.is_alive() and not error_status["error_occurred"]:
|
188 |
-
# Check if new steps have been completed
|
189 |
-
if steps_completed and steps_completed[-1] > last_step_yielded:
|
190 |
-
last_step_yielded = steps_completed[-1]
|
191 |
-
png_number = last_step_yielded - 1
|
192 |
-
# Get the image for this step
|
193 |
-
image_path = os.path.join(save_dir, f"{png_number}.png")
|
194 |
-
if os.path.exists(image_path):
|
195 |
-
yield (image_path, f"Iteration {last_step_yielded}/{num_iterations} - Image saved", None)
|
196 |
-
else:
|
197 |
-
yield (None, f"Iteration {last_step_yielded}/{num_iterations} - Image not found", None)
|
198 |
-
else:
|
199 |
-
time.sleep(0.1) # Sleep to prevent busy waiting
|
200 |
-
|
201 |
-
if error_status["error_occurred"]:
|
202 |
-
torch.cuda.empty_cache() # Free up cached memory
|
203 |
-
gc.collect()
|
204 |
-
yield (None, "CUDA out of memory. Please reduce your batch size or image resolution.", None)
|
205 |
-
else:
|
206 |
-
main_thread.join() # Ensure thread completion
|
207 |
-
final_image_path = os.path.join(save_dir, "best_image.png")
|
208 |
-
if os.path.exists(final_image_path):
|
209 |
-
iter_images = list_iter_images(save_dir)
|
210 |
-
torch.cuda.empty_cache() # Free up cached memory
|
211 |
-
gc.collect()
|
212 |
-
time.sleep(0.5)
|
213 |
-
yield (final_image_path, f"Final image saved at {final_image_path}", iter_images)
|
214 |
-
else:
|
215 |
-
torch.cuda.empty_cache() # Free up cached memory
|
216 |
-
gc.collect()
|
217 |
-
yield (None, "Image generation completed, but no final image was found.", None)
|
218 |
|
219 |
-
|
220 |
-
gc.collect()
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
229 |
else:
|
230 |
-
|
231 |
-
|
232 |
-
print(f"Unexpected Error: {e}")
|
233 |
-
yield (None, f"An unexpected error occurred: {str(e)}", None)
|
234 |
-
|
235 |
-
def show_gallery_output(gallery_state):
|
236 |
-
if gallery_state is not None:
|
237 |
-
return gr.update(value=gallery_state, visible=True)
|
238 |
-
else:
|
239 |
-
return gr.update(value=None, visible=False)
|
240 |
-
|
241 |
-
# Create Gradio interface
|
242 |
-
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
|
243 |
-
description="Enter a prompt to generate an image using ReNO. Adjust the model and parameters as needed."
|
244 |
-
|
245 |
-
css="""
|
246 |
-
#model-status-id{
|
247 |
-
height: 126px;
|
248 |
-
}
|
249 |
-
#model-status-id .progress-text{
|
250 |
-
font-size: 10px!important;
|
251 |
-
}
|
252 |
-
#model-status-id .progress-level-inner{
|
253 |
-
font-size: 8px!important;
|
254 |
-
}
|
255 |
-
"""
|
256 |
-
|
257 |
-
with gr.Blocks(css=css, analytics_enabled=False) as demo:
|
258 |
-
loaded_model_setup = gr.State()
|
259 |
-
gallery_state = gr.State()
|
260 |
-
with gr.Column():
|
261 |
-
gr.Markdown(title)
|
262 |
-
gr.Markdown(description)
|
263 |
-
gr.HTML("""
|
264 |
-
<div style="display:flex;column-gap:4px;">
|
265 |
-
<a href='https://github.com/ExplainableML/ReNO'>
|
266 |
-
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
267 |
-
</a>
|
268 |
-
<a href='https://arxiv.org/abs/2406.04312v1'>
|
269 |
-
<img src='https://img.shields.io/badge/Paper-Arxiv-red'>
|
270 |
-
</a>
|
271 |
-
</div>
|
272 |
-
""")
|
273 |
-
|
274 |
-
with gr.Row():
|
275 |
-
with gr.Column():
|
276 |
-
prompt = gr.Textbox(label="Prompt")
|
277 |
-
with gr.Row():
|
278 |
-
chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd", "flux"], label="Model", value="sd-turbo")
|
279 |
-
seed = gr.Number(label="seed", value=0)
|
280 |
-
|
281 |
-
model_status = gr.Textbox(label="model status", visible=True, elem_id="model-status-id")
|
282 |
-
|
283 |
-
with gr.Row():
|
284 |
-
n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=10, label="Number of Iterations")
|
285 |
-
learning_rate = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=5.0, label="Learning Rate")
|
286 |
-
|
287 |
-
with gr.Accordion("Advanced Settings", open=True):
|
288 |
-
with gr.Column():
|
289 |
-
with gr.Row():
|
290 |
-
enable_hps = gr.Checkbox(label="HPS ON", value=False, scale=1)
|
291 |
-
hps_w = gr.Slider(label="HPS weight", step=0.1, minimum=0.0, maximum=10.0, value=5.0, interactive=False, scale=3)
|
292 |
-
with gr.Row():
|
293 |
-
enable_imagereward = gr.Checkbox(label="ImageReward ON", value=False, scale=1)
|
294 |
-
imgrw_w = gr.Slider(label="ImageReward weight", step=0.1, minimum=0, maximum=5.0, value=1.0, interactive=False, scale=3)
|
295 |
-
with gr.Row():
|
296 |
-
enable_pickscore = gr.Checkbox(label="PickScore ON", value=False, scale=1)
|
297 |
-
pcks_w = gr.Slider(label="PickScore weight", step=0.01, minimum=0, maximum=5.0, value=0.05, interactive=False, scale=3)
|
298 |
-
with gr.Row():
|
299 |
-
enable_clip = gr.Checkbox(label="CLIP ON", value=False, scale=1)
|
300 |
-
clip_w = gr.Slider(label="CLIP weight", step=0.01, minimum=0, maximum=0.1, value=0.01, interactive=False, scale=3)
|
301 |
-
|
302 |
-
submit_btn = gr.Button("Submit")
|
303 |
-
|
304 |
-
gr.Examples(
|
305 |
-
examples = [
|
306 |
-
"A red dog and a green cat",
|
307 |
-
"A pink elephant and a grey cow",
|
308 |
-
"A toaster riding a bike",
|
309 |
-
"Dwayne Johnson depicted as a philosopher king in an academic painting by Greg Rutkowski",
|
310 |
-
"A curious, orange fox and a fluffy, white rabbit, playing together in a lush, green meadow filled with yellow dandelions",
|
311 |
-
"An epic oil painting: a red portal infront of a cityscape, a solitary figure, and a colorful sky over snowy mountains"
|
312 |
-
],
|
313 |
-
inputs = [prompt]
|
314 |
-
)
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
if
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
else:
|
325 |
-
|
326 |
-
|
327 |
-
enable_hps.change(
|
328 |
-
fn = allow_weighting,
|
329 |
-
inputs = [enable_hps],
|
330 |
-
outputs = [hps_w],
|
331 |
-
queue = False
|
332 |
-
)
|
333 |
-
enable_imagereward.change(
|
334 |
-
fn = allow_weighting,
|
335 |
-
inputs = [enable_imagereward],
|
336 |
-
outputs = [imgrw_w],
|
337 |
-
queue = False
|
338 |
-
)
|
339 |
-
enable_pickscore.change(
|
340 |
-
fn = allow_weighting,
|
341 |
-
inputs = [enable_pickscore],
|
342 |
-
outputs = [pcks_w],
|
343 |
-
queue = False
|
344 |
-
)
|
345 |
-
enable_clip.change(
|
346 |
-
fn = allow_weighting,
|
347 |
-
inputs = [enable_clip],
|
348 |
-
outputs = [clip_w],
|
349 |
-
queue = False
|
350 |
-
)
|
351 |
|
|
|
|
|
352 |
|
353 |
-
submit_btn.click(
|
354 |
-
fn = start_over,
|
355 |
-
inputs =[gallery_state],
|
356 |
-
outputs = [gallery_state, output_image, status, iter_gallery]
|
357 |
-
).then(
|
358 |
-
fn = setup_model,
|
359 |
-
inputs = [loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate],
|
360 |
-
outputs = [model_status, loaded_model_setup] # Load the new setup into the state
|
361 |
-
).then(
|
362 |
-
fn = generate_image,
|
363 |
-
inputs = [loaded_model_setup, n_iter],
|
364 |
-
outputs = [output_image, status, gallery_state]
|
365 |
-
).then(
|
366 |
-
fn = show_gallery_output,
|
367 |
-
inputs = [gallery_state],
|
368 |
-
outputs = iter_gallery
|
369 |
-
)
|
370 |
|
371 |
-
|
372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
import blobfile as bf
|
6 |
import torch
|
7 |
import gc
|
8 |
+
from datasets import load_dataset
|
9 |
+
from pytorch_lightning import seed_everything
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
from arguments import parse_args
|
13 |
+
from models import get_model, get_multi_apply_fn
|
14 |
+
from rewards import get_reward_losses
|
15 |
+
from training import LatentNoiseTrainer, get_optimizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
import torch
|
19 |
+
import gc
|
|
|
|
|
|
|
20 |
|
21 |
+
def clear_gpu():
|
22 |
+
"""Clear GPU memory by removing tensors, freeing cache, and moving data to CPU."""
|
23 |
+
# List memory usage before clearing
|
24 |
+
print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
|
25 |
+
print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
|
26 |
|
27 |
+
# Force the garbage collector to free unreferenced objects
|
|
|
28 |
gc.collect()
|
29 |
+
|
30 |
+
# Move any bound tensors back to CPU if needed
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
torch.cuda.empty_cache() # Free up the cached memory
|
33 |
+
torch.cuda.ipc_collect() # Clear any cross-process memory
|
34 |
|
35 |
+
print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB")
|
36 |
+
print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB")
|
37 |
+
|
38 |
+
def unload_previous_model_if_needed(loaded_model_setup):
|
39 |
+
"""Unload the current model from the GPU and free resources if a new model is being loaded."""
|
40 |
+
if loaded_model_setup is not None:
|
41 |
+
print("Unloading previous model from GPU to free memory.")
|
42 |
+
previous_model = loaded_model_setup[7] # Assuming pipe is at position [7] in the setup
|
43 |
+
if hasattr(previous_model, 'to') and loaded_model_setup[0].model != "flux":
|
44 |
+
previous_model.to('cpu') # Move model to CPU to free GPU memory
|
45 |
+
del previous_model # Delete the reference to the model
|
46 |
+
clear_gpu() # Clear all remaining GPU memory
|
47 |
+
|
48 |
+
def setup(args, loaded_model_setup=None):
|
49 |
+
seed_everything(args.seed)
|
50 |
+
bf.makedirs(f"{args.save_dir}/logs/{args.task}")
|
51 |
+
|
52 |
+
# Set up logging and name settings
|
53 |
+
logger = logging.getLogger()
|
54 |
+
logger.handlers.clear() # Clear existing handlers
|
55 |
+
settings = (
|
56 |
+
f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}"
|
57 |
+
f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}"
|
58 |
+
f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}"
|
59 |
+
f"_reg{args.reg_weight if args.enable_reg else '0'}"
|
60 |
+
f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}"
|
61 |
+
f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}"
|
62 |
+
f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}"
|
63 |
+
f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}"
|
64 |
+
f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}"
|
65 |
+
)
|
66 |
|
67 |
+
file_stream = open(f"{args.save_dir}/logs/{args.task}/{settings}.txt", "w")
|
68 |
+
handler = logging.StreamHandler(file_stream)
|
69 |
+
formatter = logging.Formatter("%(asctime)s - %(message)s")
|
70 |
+
handler.setFormatter(formatter)
|
71 |
+
logger.addHandler(handler)
|
72 |
+
logger.setLevel("INFO")
|
73 |
+
consoleHandler = logging.StreamHandler()
|
74 |
+
consoleHandler.setFormatter(formatter)
|
75 |
+
logger.addHandler(consoleHandler)
|
76 |
|
77 |
+
logging.info(args)
|
|
|
|
|
78 |
|
79 |
+
if args.device_id is not None:
|
80 |
+
logging.info(f"Using CUDA device {args.device_id}")
|
81 |
+
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
82 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = args.device_id
|
83 |
+
|
84 |
+
device = torch.device("cuda")
|
85 |
+
dtype = torch.float16 if args.dtype == "float16" else torch.float32
|
86 |
+
|
87 |
+
# If args.model is the same as the one in loaded_model_setup, reuse the trainer and pipe
|
88 |
+
if loaded_model_setup and args.model == loaded_model_setup[0].model:
|
89 |
+
print(f"Reusing model {args.model} from loaded setup.")
|
90 |
+
trainer = loaded_model_setup[1] # Trainer is at position 1 in loaded_model_setup
|
91 |
|
92 |
+
# Update trainer with the new arguments
|
93 |
+
trainer.n_iters = args.n_iters
|
94 |
+
trainer.n_inference_steps = args.n_inference_steps
|
95 |
+
trainer.seed = args.seed
|
96 |
+
trainer.save_all_images = args.save_all_images
|
97 |
+
trainer.no_optim = args.no_optim
|
98 |
+
trainer.regularize = args.enable_reg
|
99 |
+
trainer.regularization_weight = args.reg_weight
|
100 |
+
trainer.grad_clip = args.grad_clip
|
101 |
+
trainer.log_metrics = args.task == "single" or not args.no_optim
|
102 |
+
trainer.imageselect = args.imageselect
|
103 |
|
104 |
+
# Get latents (this step is still required)
|
105 |
+
if args.model == "flux":
|
106 |
+
shape = (1, 16 * 64, 64)
|
107 |
+
elif args.model != "pixart":
|
108 |
+
height = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor
|
109 |
+
width = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor
|
110 |
+
shape = (
|
111 |
+
1,
|
112 |
+
trainer.model.unet.in_channels,
|
113 |
+
height // trainer.model.vae_scale_factor,
|
114 |
+
width // trainer.model.vae_scale_factor,
|
115 |
+
)
|
116 |
+
else:
|
117 |
+
height = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor
|
118 |
+
width = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor
|
119 |
+
shape = (
|
120 |
+
1,
|
121 |
+
trainer.model.transformer.config.in_channels,
|
122 |
+
height // trainer.model.vae_scale_factor,
|
123 |
+
width // trainer.model.vae_scale_factor,
|
124 |
+
)
|
125 |
+
|
126 |
+
pipe = loaded_model_setup[7]
|
127 |
+
enable_grad = not args.no_optim
|
128 |
+
|
129 |
+
return args, trainer, device, dtype, shape, enable_grad, settings, pipe
|
130 |
+
|
131 |
+
# Unload previous model and clear GPU resources
|
132 |
+
unload_previous_model_if_needed(loaded_model_setup)
|
133 |
+
|
134 |
+
# Proceed with full model loading if args.model is different
|
135 |
+
print(f"Loading new model: {args.model}")
|
136 |
|
137 |
+
# Get reward losses
|
138 |
+
reward_losses = get_reward_losses(args, dtype, device, args.cache_dir)
|
|
|
|
|
139 |
|
140 |
+
# Get model and noise trainer
|
141 |
+
pipe = get_model(
|
142 |
+
args.model, dtype, device, args.cache_dir, args.memsave, args.cpu_offloading
|
143 |
+
)
|
144 |
+
|
145 |
+
# Final memory cleanup after model loading
|
146 |
+
torch.cuda.empty_cache()
|
147 |
gc.collect()
|
148 |
|
149 |
+
trainer = LatentNoiseTrainer(
|
150 |
+
reward_losses=reward_losses,
|
151 |
+
model=pipe,
|
152 |
+
n_iters=args.n_iters,
|
153 |
+
n_inference_steps=args.n_inference_steps,
|
154 |
+
seed=args.seed,
|
155 |
+
save_all_images=args.save_all_images,
|
156 |
+
device=device if not args.cpu_offloading else 'cpu', # Use CPU if offloading is enabled
|
157 |
+
no_optim=args.no_optim,
|
158 |
+
regularize=args.enable_reg,
|
159 |
+
regularization_weight=args.reg_weight,
|
160 |
+
grad_clip=args.grad_clip,
|
161 |
+
log_metrics=args.task == "single" or not args.no_optim,
|
162 |
+
imageselect=args.imageselect,
|
163 |
+
)
|
164 |
|
165 |
+
# Create latents
|
166 |
+
if args.model == "flux":
|
167 |
+
shape = (1, 16 * 64, 64)
|
168 |
+
elif args.model != "pixart":
|
169 |
+
height = pipe.unet.config.sample_size * pipe.vae_scale_factor
|
170 |
+
width = pipe.unet.config.sample_size * pipe.vae_scale_factor
|
171 |
+
shape = (
|
172 |
+
1,
|
173 |
+
pipe.unet.in_channels,
|
174 |
+
height // pipe.vae_scale_factor,
|
175 |
+
width // pipe.vae_scale_factor,
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
height = pipe.transformer.config.sample_size * pipe.vae_scale_factor
|
179 |
+
width = pipe.transformer.config.sample_size * pipe.vae_scale_factor
|
180 |
+
shape = (
|
181 |
+
1,
|
182 |
+
pipe.transformer.config.in_channels,
|
183 |
+
height // pipe.vae_scale_factor,
|
184 |
+
width // pipe.vae_scale_factor,
|
185 |
+
)
|
186 |
+
|
187 |
+
enable_grad = not args.no_optim
|
188 |
|
189 |
+
# Final memory cleanup
|
190 |
+
torch.cuda.empty_cache() # Free up cached memory
|
191 |
+
gc.collect()
|
192 |
|
|
|
|
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
+
return args, trainer, device, dtype, shape, enable_grad, settings, pipe
|
|
|
196 |
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe, progress_callback=None):
|
201 |
+
|
202 |
+
if args.task == "single":
|
203 |
+
# Attempt to move the model to GPU if model is not Flux
|
204 |
+
if args.model != "flux":
|
205 |
+
if pipe.device != torch.device('cuda'):
|
206 |
+
pipe.to(device, dtype)
|
207 |
else:
|
208 |
+
print(f"PIPE:{pipe}")
|
209 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
if args.cpu_offloading:
|
212 |
+
pipe.enable_sequential_cpu_offload()
|
213 |
+
|
214 |
+
#if pipe.device != torch.device('cuda'):
|
215 |
+
# pipe.to(device, dtype)
|
216 |
+
|
217 |
+
if args.enable_multi_apply:
|
218 |
+
|
219 |
+
multi_apply_fn = get_multi_apply_fn(
|
220 |
+
model_type=args.multi_step_model,
|
221 |
+
seed=args.seed,
|
222 |
+
pipe=pipe,
|
223 |
+
cache_dir=args.cache_dir,
|
224 |
+
device=device if not args.cpu_offloading else 'cpu',
|
225 |
+
dtype=dtype,
|
226 |
+
)
|
227 |
else:
|
228 |
+
multi_apply_fn = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
torch.cuda.empty_cache() # Free up cached memory
|
231 |
+
gc.collect()
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
init_latents = torch.randn(shape, device=device, dtype=dtype)
|
235 |
+
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
|
236 |
+
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
|
237 |
+
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
|
238 |
+
os.makedirs(f"{save_dir}", exist_ok=True)
|
239 |
+
init_image, best_image, total_init_rewards, total_best_rewards = trainer.train(
|
240 |
+
latents, args.prompt, optimizer, save_dir, multi_apply_fn, progress_callback=progress_callback
|
241 |
+
)
|
242 |
+
best_image.save(f"{save_dir}/best_image.png")
|
243 |
+
#init_image.save(f"{save_dir}/init_image.png")
|
244 |
+
|
245 |
+
elif args.task == "example-prompts":
|
246 |
+
fo = open("assets/example_prompts.txt", "r")
|
247 |
+
prompts = fo.readlines()
|
248 |
+
fo.close()
|
249 |
+
for i, prompt in tqdm(enumerate(prompts)):
|
250 |
+
# Get new latents and optimizer
|
251 |
+
init_latents = torch.randn(shape, device=device, dtype=dtype)
|
252 |
+
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
|
253 |
+
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
|
254 |
+
|
255 |
+
prompt = prompt.strip()
|
256 |
+
name = f"{i:03d}_{prompt[:150]}.png"
|
257 |
+
save_dir = f"{args.save_dir}/{args.task}/{settings}/{name}"
|
258 |
+
os.makedirs(save_dir, exist_ok=True)
|
259 |
+
init_image, best_image, init_rewards, best_rewards = trainer.train(
|
260 |
+
latents, prompt, optimizer, save_dir, multi_apply_fn
|
261 |
+
)
|
262 |
+
if i == 0:
|
263 |
+
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
|
264 |
+
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
|
265 |
+
for k in best_rewards.keys():
|
266 |
+
total_best_rewards[k] += best_rewards[k]
|
267 |
+
total_init_rewards[k] += init_rewards[k]
|
268 |
+
best_image.save(f"{save_dir}/best_image.png")
|
269 |
+
init_image.save(f"{save_dir}/init_image.png")
|
270 |
+
logging.info(f"Initial rewards: {init_rewards}")
|
271 |
+
logging.info(f"Best rewards: {best_rewards}")
|
272 |
+
for k in total_best_rewards.keys():
|
273 |
+
total_best_rewards[k] /= len(prompts)
|
274 |
+
total_init_rewards[k] /= len(prompts)
|
275 |
+
|
276 |
+
# save results to directory
|
277 |
+
with open(f"{args.save_dir}/example-prompts/{settings}/results.txt", "w") as f:
|
278 |
+
f.write(
|
279 |
+
f"Mean initial all rewards: {total_init_rewards}\n"
|
280 |
+
f"Mean best all rewards: {total_best_rewards}\n"
|
281 |
+
)
|
282 |
+
elif args.task == "t2i-compbench":
|
283 |
+
prompt_list_file = f"../T2I-CompBench/examples/dataset/{args.prompt}.txt"
|
284 |
+
fo = open(prompt_list_file, "r")
|
285 |
+
prompts = fo.readlines()
|
286 |
+
fo.close()
|
287 |
+
os.makedirs(f"{args.save_dir}/{args.task}/{settings}/samples", exist_ok=True)
|
288 |
+
for i, prompt in tqdm(enumerate(prompts)):
|
289 |
+
# Get new latents and optimizer
|
290 |
+
init_latents = torch.randn(shape, device=device, dtype=dtype)
|
291 |
+
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
|
292 |
+
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
|
293 |
+
|
294 |
+
prompt = prompt.strip()
|
295 |
+
init_image, best_image, init_rewards, best_rewards = trainer.train(
|
296 |
+
latents, prompt, optimizer, None, multi_apply_fn
|
297 |
+
)
|
298 |
+
if i == 0:
|
299 |
+
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
|
300 |
+
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
|
301 |
+
for k in best_rewards.keys():
|
302 |
+
total_best_rewards[k] += best_rewards[k]
|
303 |
+
total_init_rewards[k] += init_rewards[k]
|
304 |
+
name = f"{prompt}_{i:06d}.png"
|
305 |
+
best_image.save(f"{args.save_dir}/{args.task}/{settings}/samples/{name}")
|
306 |
+
logging.info(f"Initial rewards: {init_rewards}")
|
307 |
+
logging.info(f"Best rewards: {best_rewards}")
|
308 |
+
for k in total_best_rewards.keys():
|
309 |
+
total_best_rewards[k] /= len(prompts)
|
310 |
+
total_init_rewards[k] /= len(prompts)
|
311 |
+
elif args.task == "parti-prompts":
|
312 |
+
parti_dataset = load_dataset("nateraw/parti-prompts", split="train")
|
313 |
+
total_reward_diff = 0.0
|
314 |
+
total_best_reward = 0.0
|
315 |
+
total_init_reward = 0.0
|
316 |
+
total_improved_samples = 0
|
317 |
+
for index, sample in enumerate(parti_dataset):
|
318 |
+
os.makedirs(
|
319 |
+
f"{args.save_dir}/{args.task}/{settings}/{index}", exist_ok=True
|
320 |
+
)
|
321 |
+
prompt = sample["Prompt"]
|
322 |
+
init_image, best_image, init_rewards, best_rewards = trainer.train(
|
323 |
+
latents, prompt, optimizer, multi_apply_fn
|
324 |
+
)
|
325 |
+
best_image.save(
|
326 |
+
f"{args.save_dir}/{args.task}/{settings}/{index}/best_image.png"
|
327 |
+
)
|
328 |
+
open(
|
329 |
+
f"{args.save_dir}/{args.task}/{settings}/{index}/prompt.txt", "w"
|
330 |
+
).write(
|
331 |
+
f"{prompt} \n Initial Rewards: {init_rewards} \n Best Rewards: {best_rewards}"
|
332 |
+
)
|
333 |
+
logging.info(f"Initial rewards: {init_rewards}")
|
334 |
+
logging.info(f"Best rewards: {best_rewards}")
|
335 |
+
initial_reward = init_rewards[args.benchmark_reward]
|
336 |
+
best_reward = best_rewards[args.benchmark_reward]
|
337 |
+
total_reward_diff += best_reward - initial_reward
|
338 |
+
total_best_reward += best_reward
|
339 |
+
total_init_reward += initial_reward
|
340 |
+
if best_reward < initial_reward:
|
341 |
+
total_improved_samples += 1
|
342 |
+
if i == 0:
|
343 |
+
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
|
344 |
+
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
|
345 |
+
for k in best_rewards.keys():
|
346 |
+
total_best_rewards[k] += best_rewards[k]
|
347 |
+
total_init_rewards[k] += init_rewards[k]
|
348 |
+
# Get new latents and optimizer
|
349 |
+
init_latents = torch.randn(shape, device=device, dtype=dtype)
|
350 |
+
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad)
|
351 |
+
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
|
352 |
+
improvement_percentage = total_improved_samples / parti_dataset.num_rows
|
353 |
+
mean_best_reward = total_best_reward / parti_dataset.num_rows
|
354 |
+
mean_init_reward = total_init_reward / parti_dataset.num_rows
|
355 |
+
mean_reward_diff = total_reward_diff / parti_dataset.num_rows
|
356 |
+
logging.info(
|
357 |
+
f"Improvement percentage: {improvement_percentage:.4f}, "
|
358 |
+
f"mean initial reward: {mean_init_reward:.4f}, "
|
359 |
+
f"mean best reward: {mean_best_reward:.4f}, "
|
360 |
+
f"mean reward diff: {mean_reward_diff:.4f}"
|
361 |
+
)
|
362 |
+
for k in total_best_rewards.keys():
|
363 |
+
total_best_rewards[k] /= len(parti_dataset)
|
364 |
+
total_init_rewards[k] /= len(parti_dataset)
|
365 |
+
# save results
|
366 |
+
os.makedirs(f"{args.save_dir}/parti-prompts/{settings}", exist_ok=True)
|
367 |
+
with open(f"{args.save_dir}/parti-prompts/{settings}/results.txt", "w") as f:
|
368 |
+
f.write(
|
369 |
+
f"Mean improvement: {improvement_percentage:.4f}, "
|
370 |
+
f"mean initial reward: {mean_init_reward:.4f}, "
|
371 |
+
f"mean best reward: {mean_best_reward:.4f}, "
|
372 |
+
f"mean reward diff: {mean_reward_diff:.4f}\n"
|
373 |
+
f"Mean initial all rewards: {total_init_rewards}\n"
|
374 |
+
f"Mean best all rewards: {total_best_rewards}"
|
375 |
+
)
|
376 |
+
elif args.task == "geneval":
|
377 |
+
prompt_list_file = "../geneval/prompts/evaluation_metadata.jsonl"
|
378 |
+
with open(prompt_list_file) as fp:
|
379 |
+
metadatas = [json.loads(line) for line in fp]
|
380 |
+
outdir = f"{args.save_dir}/{args.task}/{settings}"
|
381 |
+
for index, metadata in enumerate(metadatas):
|
382 |
+
# Get new latents and optimizer
|
383 |
+
init_latents = torch.randn(shape, device=device, dtype=dtype)
|
384 |
+
latents = torch.nn.Parameter(init_latents, requires_grad=True)
|
385 |
+
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov)
|
386 |
+
|
387 |
+
prompt = metadata["prompt"]
|
388 |
+
init_image, best_image, init_rewards, best_rewards = trainer.train(
|
389 |
+
latents, prompt, optimizer, None, multi_apply_fn
|
390 |
+
)
|
391 |
+
logging.info(f"Initial rewards: {init_rewards}")
|
392 |
+
logging.info(f"Best rewards: {best_rewards}")
|
393 |
+
outpath = f"{outdir}/{index:0>5}"
|
394 |
+
os.makedirs(f"{outpath}/samples", exist_ok=True)
|
395 |
+
with open(f"{outpath}/metadata.jsonl", "w") as fp:
|
396 |
+
json.dump(metadata, fp)
|
397 |
+
best_image.save(f"{outpath}/samples/{args.seed:05}.png")
|
398 |
+
if i == 0:
|
399 |
+
total_best_rewards = {k: 0.0 for k in best_rewards.keys()}
|
400 |
+
total_init_rewards = {k: 0.0 for k in best_rewards.keys()}
|
401 |
+
for k in best_rewards.keys():
|
402 |
+
total_best_rewards[k] += best_rewards[k]
|
403 |
+
total_init_rewards[k] += init_rewards[k]
|
404 |
+
for k in total_best_rewards.keys():
|
405 |
+
total_best_rewards[k] /= len(parti_dataset)
|
406 |
+
total_init_rewards[k] /= len(parti_dataset)
|
407 |
+
else:
|
408 |
+
raise ValueError(f"Unknown task {args.task}")
|
409 |
+
# log total rewards
|
410 |
+
logging.info(f"Mean initial rewards: {total_init_rewards}")
|
411 |
+
logging.info(f"Mean best rewards: {total_best_rewards}")
|
412 |
+
|
413 |
+
def main():
|
414 |
+
args = parse_args()
|
415 |
+
args, trainer, device, dtype, shape, enable_grad, settings, pipe = setup(args, loaded_model_setup=None)
|
416 |
+
execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe)
|
417 |
+
|
418 |
+
if __name__ == "__main__":
|
419 |
+
main()
|