from typing import List, Optional, Union import torch from diffusers import PixArtAlphaPipeline from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import retrieve_timesteps def freeze_params(params): for param in params: param.requires_grad = False class RewardPixartPipeline(PixArtAlphaPipeline): def __init__( self, tokenizer, text_encoder, transformer, scheduler, vae, memsave=False ): super().__init__( tokenizer, text_encoder, vae, transformer, scheduler, ) # optionally enable memsave_torch if memsave: import memsave_torch.nn self.vae = memsave_torch.nn.convert_to_memory_saving(self.vae) self.text_encoder = memsave_torch.nn.convert_to_memory_saving( self.text_encoder ) self.text_encoder.gradient_checkpointing_enable() self.vae.enable_gradient_checkpointing() self.text_encoder.eval() self.vae.eval() freeze_params(self.vae.parameters()) freeze_params(self.text_encoder.parameters()) def apply( self, latents: torch.Tensor = None, prompt: Union[str, List[str]] = None, negative_prompt: str = "", num_inference_steps: int = 20, timesteps: List[int] = [400], sigmas: List[float] = None, guidance_scale: float = 1.0, num_images_per_prompt: Optional[int] = 1, height: Optional[int] = 512, width: Optional[int] = 512, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, prompt_attention_mask: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, callback_steps: int = 1, clean_caption: bool = False, use_resolution_binning: bool = True, max_sequence_length: int = 120, **kwargs, ): # 1. Check inputs. Raise error if not correct height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor if use_resolution_binning: if self.transformer.config.sample_size == 128: aspect_ratio_bin = ASPECT_RATIO_1024_BIN elif self.transformer.config.sample_size == 64: aspect_ratio_bin = ASPECT_RATIO_512_BIN elif self.transformer.config.sample_size == 32: aspect_ratio_bin = ASPECT_RATIO_256_BIN else: raise ValueError("Invalid sample size") orig_height, orig_width = height, width height, width = self.image_processor.classify_height_width_bin( height, width, ratios=aspect_ratio_bin ) self.check_inputs( prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat( [negative_prompt_attention_mask, prompt_attention_mask], dim=0 ) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Prepare micro-conditions. added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if self.transformer.config.sample_size == 128: resolution = torch.tensor([height, width]).repeat( batch_size * num_images_per_prompt, 1 ) aspect_ratio = torch.tensor([float(height / width)]).repeat( batch_size * num_images_per_prompt, 1 ) resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) if do_classifier_free_guidance: resolution = torch.cat([resolution, resolution], dim=0) aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} # 7. Denoising loop num_warmup_steps = max( len(timesteps) - num_inference_steps * self.scheduler.order, 0 ) for i, t in enumerate(timesteps): latent_model_input = ( torch.cat([latents] * 2) if do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor( [current_timestep], dtype=dtype, device=latent_model_input.device ) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: noise_pred = noise_pred.chunk(2, dim=1)[0] else: noise_pred = noise_pred # compute previous image: x_t -> x_t-1 if num_inference_steps == 1: # For DMD one step sampling: https://arxiv.org/abs/2311.18828 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs ).pred_original_sample image = self.vae.decode( latents / self.vae.config.scaling_factor, return_dict=False )[0] if use_resolution_binning: image = self.image_processor.resize_and_crop_tensor( image, orig_width, orig_height ) image = (image / 2 + 0.5).clamp(0, 1) # Offload all models self.maybe_free_model_hooks() return image ASPECT_RATIO_2048_BIN = { "0.25": [1024.0, 4096.0], "0.26": [1024.0, 3968.0], "0.27": [1024.0, 3840.0], "0.28": [1024.0, 3712.0], "0.32": [1152.0, 3584.0], "0.33": [1152.0, 3456.0], "0.35": [1152.0, 3328.0], "0.4": [1280.0, 3200.0], "0.42": [1280.0, 3072.0], "0.48": [1408.0, 2944.0], "0.5": [1408.0, 2816.0], "0.52": [1408.0, 2688.0], "0.57": [1536.0, 2688.0], "0.6": [1536.0, 2560.0], "0.68": [1664.0, 2432.0], "0.72": [1664.0, 2304.0], "0.78": [1792.0, 2304.0], "0.82": [1792.0, 2176.0], "0.88": [1920.0, 2176.0], "0.94": [1920.0, 2048.0], "1.0": [2048.0, 2048.0], "1.07": [2048.0, 1920.0], "1.13": [2176.0, 1920.0], "1.21": [2176.0, 1792.0], "1.29": [2304.0, 1792.0], "1.38": [2304.0, 1664.0], "1.46": [2432.0, 1664.0], "1.67": [2560.0, 1536.0], "1.75": [2688.0, 1536.0], "2.0": [2816.0, 1408.0], "2.09": [2944.0, 1408.0], "2.4": [3072.0, 1280.0], "2.5": [3200.0, 1280.0], "2.89": [3328.0, 1152.0], "3.0": [3456.0, 1152.0], "3.11": [3584.0, 1152.0], "3.62": [3712.0, 1024.0], "3.75": [3840.0, 1024.0], "3.88": [3968.0, 1024.0], "4.0": [4096.0, 1024.0], } ASPECT_RATIO_256_BIN = { "0.25": [128.0, 512.0], "0.28": [128.0, 464.0], "0.32": [144.0, 448.0], "0.33": [144.0, 432.0], "0.35": [144.0, 416.0], "0.4": [160.0, 400.0], "0.42": [160.0, 384.0], "0.48": [176.0, 368.0], "0.5": [176.0, 352.0], "0.52": [176.0, 336.0], "0.57": [192.0, 336.0], "0.6": [192.0, 320.0], "0.68": [208.0, 304.0], "0.72": [208.0, 288.0], "0.78": [224.0, 288.0], "0.82": [224.0, 272.0], "0.88": [240.0, 272.0], "0.94": [240.0, 256.0], "1.0": [256.0, 256.0], "1.07": [256.0, 240.0], "1.13": [272.0, 240.0], "1.21": [272.0, 224.0], "1.29": [288.0, 224.0], "1.38": [288.0, 208.0], "1.46": [304.0, 208.0], "1.67": [320.0, 192.0], "1.75": [336.0, 192.0], "2.0": [352.0, 176.0], "2.09": [368.0, 176.0], "2.4": [384.0, 160.0], "2.5": [400.0, 160.0], "3.0": [432.0, 144.0], "4.0": [512.0, 128.0], } ASPECT_RATIO_1024_BIN = { "0.25": [512.0, 2048.0], "0.28": [512.0, 1856.0], "0.32": [576.0, 1792.0], "0.33": [576.0, 1728.0], "0.35": [576.0, 1664.0], "0.4": [640.0, 1600.0], "0.42": [640.0, 1536.0], "0.48": [704.0, 1472.0], "0.5": [704.0, 1408.0], "0.52": [704.0, 1344.0], "0.57": [768.0, 1344.0], "0.6": [768.0, 1280.0], "0.68": [832.0, 1216.0], "0.72": [832.0, 1152.0], "0.78": [896.0, 1152.0], "0.82": [896.0, 1088.0], "0.88": [960.0, 1088.0], "0.94": [960.0, 1024.0], "1.0": [1024.0, 1024.0], "1.07": [1024.0, 960.0], "1.13": [1088.0, 960.0], "1.21": [1088.0, 896.0], "1.29": [1152.0, 896.0], "1.38": [1152.0, 832.0], "1.46": [1216.0, 832.0], "1.67": [1280.0, 768.0], "1.75": [1344.0, 768.0], "2.0": [1408.0, 704.0], "2.09": [1472.0, 704.0], "2.4": [1536.0, 640.0], "2.5": [1600.0, 640.0], "3.0": [1728.0, 576.0], "4.0": [2048.0, 512.0], } ASPECT_RATIO_512_BIN = { "0.25": [256.0, 1024.0], "0.28": [256.0, 928.0], "0.32": [288.0, 896.0], "0.33": [288.0, 864.0], "0.35": [288.0, 832.0], "0.4": [320.0, 800.0], "0.42": [320.0, 768.0], "0.48": [352.0, 736.0], "0.5": [352.0, 704.0], "0.52": [352.0, 672.0], "0.57": [384.0, 672.0], "0.6": [384.0, 640.0], "0.68": [416.0, 608.0], "0.72": [416.0, 576.0], "0.78": [448.0, 576.0], "0.82": [448.0, 544.0], "0.88": [480.0, 544.0], "0.94": [480.0, 512.0], "1.0": [512.0, 512.0], "1.07": [512.0, 480.0], "1.13": [544.0, 480.0], "1.21": [544.0, 448.0], "1.29": [576.0, 448.0], "1.38": [576.0, 416.0], "1.46": [608.0, 416.0], "1.67": [640.0, 384.0], "1.75": [672.0, 384.0], "2.0": [704.0, 352.0], "2.09": [736.0, 352.0], "2.4": [768.0, 320.0], "2.5": [800.0, 320.0], "3.0": [864.0, 288.0], "4.0": [1024.0, 256.0], }