Spaces:
Running
Running
# Adapted from Open-Sora-Plan | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan | |
# -------------------------------------------------------- | |
from dataclasses import dataclass | |
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils import BaseOutput, is_xformers_available | |
from einops import rearrange | |
from torch import nn | |
from diffusers.models.embeddings import PixArtAlphaTextProjection | |
from allegro.models.transformers.block import to_2tuple, BasicTransformerBlock, AdaLayerNormSingle | |
from allegro.models.transformers.embedding import PatchEmbed2D | |
from diffusers.utils import logging | |
logger = logging.get_logger(__name__) | |
class Transformer3DModelOutput(BaseOutput): | |
""" | |
The output of [`Transformer2DModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
distributions for the unnoised latent pixels. | |
""" | |
sample: torch.FloatTensor | |
class AllegroTransformer3DModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
""" | |
A 2D Transformer model for image-like data. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
This is fixed during training since it is used to learn a number of position embeddings. | |
num_vector_embeds (`int`, *optional*): | |
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). | |
Includes the class for the masked latent pixel. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): | |
The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
added to the hidden states. | |
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. | |
attention_bias (`bool`, *optional*): | |
Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
sample_size_t: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
patch_size_t: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_type: str = "ada_norm", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
caption_channels: int = None, | |
interpolation_scale_h: float = None, | |
interpolation_scale_w: float = None, | |
interpolation_scale_t: float = None, | |
use_additional_conditions: Optional[bool] = None, | |
sa_attention_mode: str = "flash", | |
ca_attention_mode: str = 'xformers', | |
downsampler: str = None, | |
use_rope: bool = False, | |
model_max_length: int = 300, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.interpolation_scale_t = interpolation_scale_t | |
self.interpolation_scale_h = interpolation_scale_h | |
self.interpolation_scale_w = interpolation_scale_w | |
self.downsampler = downsampler | |
self.caption_channels = caption_channels | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
self.inner_dim = inner_dim | |
self.in_channels = in_channels | |
self.out_channels = in_channels if out_channels is None else out_channels | |
self.use_rope = use_rope | |
self.model_max_length = model_max_length | |
self.num_layers = num_layers | |
self.config.hidden_size = inner_dim | |
# 1. Transformer3DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` | |
# Define whether input is continuous or discrete depending on configuration | |
assert in_channels is not None and patch_size is not None | |
# 2. Initialize the right blocks. | |
# Initialize the output blocks and other projection blocks when necessary. | |
assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t" | |
assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size" | |
#assert not (self.config.sample_size_t == 1 and self.config.patch_size_t == 2), "Image do not need patchfy in t-dim" | |
self.num_frames = self.config.sample_size_t | |
self.config.sample_size = to_2tuple(self.config.sample_size) | |
self.height = self.config.sample_size[0] | |
self.width = self.config.sample_size[1] | |
self.patch_size_t = self.config.patch_size_t | |
self.patch_size = self.config.patch_size | |
interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16 | |
interpolation_scale_t = ( | |
self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t | |
) | |
interpolation_scale = ( | |
self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30, | |
self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40, | |
) | |
self.pos_embed = PatchEmbed2D( | |
num_frames=self.config.sample_size_t, | |
height=self.config.sample_size[0], | |
width=self.config.sample_size[1], | |
patch_size_t=self.config.patch_size_t, | |
patch_size=self.config.patch_size, | |
in_channels=self.in_channels, | |
embed_dim=self.inner_dim, | |
interpolation_scale=interpolation_scale, | |
interpolation_scale_t=interpolation_scale_t, | |
use_abs_pos=not self.config.use_rope, | |
) | |
interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale) | |
# 3. Define transformers blocks, spatial attention | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
sa_attention_mode=sa_attention_mode, | |
ca_attention_mode=ca_attention_mode, | |
use_rope=use_rope, | |
interpolation_scale_thw=interpolation_scale_thw, | |
block_idx=d, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
if norm_type != "ada_norm_single": | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) | |
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
elif norm_type == "ada_norm_single": | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) | |
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
# 5. PixArt-Alpha blocks. | |
self.adaln_single = None | |
self.use_additional_conditions = False | |
if norm_type == "ada_norm_single": | |
# self.use_additional_conditions = self.config.sample_size[0] == 128 # False, 128 -> 1024 | |
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use | |
# additional conditions until we find better name | |
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) | |
self.caption_projection = None | |
if caption_channels is not None: | |
self.caption_projection = PixArtAlphaTextProjection( | |
in_features=caption_channels, hidden_size=inner_dim | |
) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: Optional[torch.LongTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
): | |
""" | |
The [`Transformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): | |
Input `hidden_states`. | |
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
`AdaLayerZeroNorm`. | |
added_cond_kwargs ( `Dict[str, Any]`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle` | |
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
attention_mask ( `torch.Tensor`, *optional*): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
encoder_attention_mask ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
batch_size, c, frame, h, w = hidden_states.shape | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None | |
if attention_mask is not None and attention_mask.ndim == 4: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
# b, frame+use_image_num, h, w -> a video with images | |
# b, 1, h, w -> only images | |
attention_mask = attention_mask.to(self.dtype) | |
attention_mask_vid = attention_mask[:, :frame] # b, frame, h, w | |
if attention_mask_vid.numel() > 0: | |
attention_mask_vid = attention_mask_vid.unsqueeze(1) # b 1 t h w | |
attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size), | |
stride=(self.patch_size_t, self.patch_size, self.patch_size)) | |
attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)') | |
attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: | |
# b, 1+use_image_num, l -> a video with images | |
# b, 1, l -> only images | |
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0 | |
encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None | |
# 1. Input | |
frame = frame // self.patch_size_t # patchfy | |
# print('frame', frame) | |
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs | |
hidden_states, encoder_hidden_states_vid, \ | |
timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs( | |
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size, | |
) | |
for _, block in enumerate(self.transformer_blocks): | |
hidden_states = block( | |
hidden_states, | |
attention_mask_vid, | |
encoder_hidden_states_vid, | |
encoder_attention_mask_vid, | |
timestep_vid, | |
cross_attention_kwargs, | |
class_labels, | |
frame=frame, | |
height=height, | |
width=width, | |
) | |
# 3. Output | |
output = None | |
if hidden_states is not None: | |
output = self._get_output_for_patched_inputs( | |
hidden_states=hidden_states, | |
timestep=timestep_vid, | |
class_labels=class_labels, | |
embedded_timestep=embedded_timestep_vid, | |
num_frames=frame, | |
height=height, | |
width=width, | |
) # b c t h w | |
if not return_dict: | |
return (output,) | |
return Transformer3DModelOutput(sample=output) | |
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size): | |
# batch_size = hidden_states.shape[0] | |
hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype)) | |
timestep_vid = None | |
embedded_timestep_vid = None | |
encoder_hidden_states_vid = None | |
if self.adaln_single is not None: | |
if self.use_additional_conditions and added_cond_kwargs is None: | |
raise ValueError( | |
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." | |
) | |
timestep, embedded_timestep = self.adaln_single( | |
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype | |
) # b 6d, b d | |
timestep_vid = timestep | |
embedded_timestep_vid = embedded_timestep | |
if self.caption_projection is not None: | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states) # b, 1+use_image_num, l, d or b, 1, l, d | |
encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d') | |
return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid | |
def _get_output_for_patched_inputs( | |
self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None | |
): | |
# import ipdb;ipdb.set_trace() | |
if self.config.norm_type != "ada_norm_single": | |
conditioning = self.transformer_blocks[0].norm1.emb( | |
timestep, class_labels, hidden_dtype=self.dtype | |
) | |
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
hidden_states = self.proj_out_2(hidden_states) | |
elif self.config.norm_type == "ada_norm_single": | |
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) | |
# Modulation | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.squeeze(1) | |
# unpatchify | |
if self.adaln_single is None: | |
height = width = int(hidden_states.shape[1] ** 0.5) | |
hidden_states = hidden_states.reshape( | |
shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size) | |
) | |
return output | |