import gradio as gr from PIL import Image from io import BytesIO import torch import os #os.system("pip install git+https://github.com/fffiloni/diffusers") from diffusers import DiffusionPipeline, DDIMScheduler from imagic import ImagicStableDiffusionPipeline has_cuda = torch.cuda.is_available() device = "cuda" pipe = ImagicStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, #custom_pipeline=ImagicStableDiffusionPipeline, scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) ).to(device) generator = torch.Generator("cuda").manual_seed(0) def train(prompt, init_image, trn_text, trn_steps): init_image = Image.open(init_image).convert("RGB") init_image = init_image.resize((256, 256)) res = pipe.train( prompt, init_image, guidance_scale=7.5, num_inference_steps=50, generator=generator, text_embedding_optimization_steps=trn_text, model_fine_tuning_optimization_steps=trn_steps) with torch.no_grad(): torch.cuda.empty_cache() return "Training is finished !", gr.update(value=0), gr.update(value=0) def generate(prompt, init_image, trn_text, trn_steps): init_image = Image.open(init_image).convert("RGB") init_image = init_image.resize((256, 256)) res = pipe.train( prompt, init_image, guidance_scale=7.5, num_inference_steps=50, generator=generator, text_embedding_optimization_steps=trn_text, model_fine_tuning_optimization_steps=trn_steps) with torch.no_grad(): torch.cuda.empty_cache() res = pipe(alpha=1) return res.images[0] title = """

Imagic Stable Diffusion • Community Pipeline

Text-Based Real Image Editing with Diffusion Models
This pipeline aims to implement this paper to Stable Diffusion, allowing for real-world image editing.


You can skip the queue by duplicating this space or run the Colab version: Duplicate Space

""" article = """ """ css = ''' #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } ''' with gr.Blocks(css=css) as block: with gr.Column(elem_id="col-container"): gr.HTML(title) prompt_input = gr.Textbox(label="Target text", placeholder="Describe the image with what you want to change about the subject") image_init = gr.Image(source="upload", type="filepath",label="Input Image") with gr.Row(): trn_text = gr.Slider(0, 500, step=50, value=250, label="text embedding") trn_steps = gr.Slider(0, 1000, step=50, value=500, label="finetuning steps") with gr.Row(): train_btn = gr.Button("1.Train") gen_btn = gr.Button("2.Generate") training_status = gr.Textbox(label="training status") image_output = gr.Image(label="Edited image") #examples=[['a sitting dog','imagic-dog.png', 250], ['a photo of a bird spreading wings','imagic-bird.png',250]] #ex = gr.Examples(examples=examples, fn=infer, inputs=[prompt_input,image_init,trn_steps], outputs=[image_output], cache_examples=False, run_on_click=False) gr.HTML(article) train_btn.click(fn=train, inputs=[prompt_input,image_init,trn_text,trn_steps], outputs=[training_status, trn_text, trn_steps]) gen_btn.click(fn=generate, inputs=[prompt_input,image_init,trn_text,trn_steps], outputs=[image_output]) block.queue(max_size=12).launch(show_api=False)