File size: 12,823 Bytes
4120479
e4a1f0a
5c98b7c
c694422
4120479
1475e41
ba844d5
5042a41
ba844d5
4120479
a6eccc7
 
f526395
ba844d5
 
4120479
5c98b7c
a9a06bb
5c98b7c
ad8076c
3eb8dac
7220c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c98b7c
e4a1f0a
07c4739
e4a1f0a
fafd4f3
07c4739
 
 
 
292215d
 
07c4739
c1a3f21
07c4739
fafd4f3
07c4739
 
 
 
292215d
 
e4a1f0a
ce628e9
5c98b7c
1a3d786
 
 
 
 
 
158e941
a18067e
a155d24
1a3d786
 
 
 
 
a155d24
ce628e9
292215d
5c98b7c
5042a41
a6eccc7
ba844d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c401eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba844d5
 
 
c401eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba844d5
 
 
 
 
8428948
ba844d5
1380f42
ba844d5
 
 
 
 
 
 
 
 
 
 
96f8320
 
a6eccc7
 
 
 
 
 
 
 
 
 
 
 
ba844d5
 
552e738
 
f526395
015098a
f526395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552e738
 
 
ba844d5
 
f526395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba844d5
 
e3e6d7f
956f068
e3e6d7f
461b2b6
956f068
ba844d5
 
 
 
498db07
 
 
 
ba844d5
498db07
 
7c7e1d8
ba844d5
7c7e1d8
 
 
48e57d6
a9a06bb
a20273c
a9a06bb
 
 
7c7e1d8
 
 
 
292215d
c5d154d
7c7e1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
c5d154d
 
 
 
 
 
7c7e1d8
 
 
c5d154d
 
498db07
7c7e1d8
 
 
 
 
 
 
 
 
 
498db07
e3e6d7f
5c98b7c
ba844d5
c5d154d
 
ba844d5
8fa68e7
 
c5d154d
8fa68e7
 
 
29e6f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e6d7f
ba844d5
a265589
 
 
ba844d5
a6eccc7
 
 
29e6f3e
b6fa736
ba844d5
5c98b7c
 
 
 
 
 
 
 
292215d
 
 
a3ed1e2
 
5c98b7c
ba844d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import gradio as gr
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard

from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
import torch
import copy
import os
import spaces
import random

import user_history

is_shared_ui = True if "fffiloni/sd-xl-lora-fusion" in os.environ['SPACE_ID'] else False
hf_token = os.environ.get("HF_TOKEN")
login(token = hf_token)

fs = HfFileSystem(token=hf_token)
api = HfApi()

original_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)

def get_files(file_paths):
    last_files = {}  # Dictionary to store the last file for each path

    for file_path in file_paths:
        # Split the file path into directory and file components
        directory, file_name = file_path.rsplit('/', 1)
    
        # Update the last file for the current path
        last_files[directory] = file_name
    
    # Extract the last files from the dictionary
    result = list(last_files.values())

    return result

def load_sfts(repo_1_id, repo_2_id):

    card_1 = ModelCard.load(repo_1_id)
    
    repo_1_data = card_1.data.to_dict()
    instance_prompt_1 = repo_1_data.get("instance_prompt")
    if instance_prompt_1 is not None:
        print(f"Trigger word 1: {instance_prompt_1}")
    else:
        instance_prompt_1 = "no trigger word needed"
        print(f"Trigger word 1: no trigger word needed")

    card_2 = ModelCard.load(repo_2_id)
    
    repo_2_data = card_2.data.to_dict()
    instance_prompt_2 = repo_2_data.get("instance_prompt")
    if instance_prompt_2 is not None:
        print(f"Trigger word 2: {instance_prompt_2}")
    else:
        instance_prompt_2 = "no trigger word needed"
        print(f"Trigger word 2: no trigger word needed")

      
    # List all ".safetensors" files in repos
    
    sfts_available_files_1 = fs.glob(f"{repo_1_id}/*.safetensors")
    sfts_available_files_1 = get_files(sfts_available_files_1)
    
    if sfts_available_files_1 == []:
        sfts_available_files_1 = ["NO SAFETENSORS FILE"]
    
    print(f"sfts 1: {sfts_available_files_1}")

    
    sfts_available_files_2 = fs.glob(f"{repo_2_id}/*.safetensors")
    sfts_available_files_2 = get_files(sfts_available_files_2)
    
    if sfts_available_files_2 == []:
        sfts_available_files_2 = ["NO SAFETENSORS FILE"]
    
    return gr.update(choices=sfts_available_files_1, value=sfts_available_files_1[0], visible=True), gr.update(choices=sfts_available_files_2, value=sfts_available_files_2[0], visible=True), gr.update(value=instance_prompt_1, visible=True), gr.update(value=instance_prompt_2, visible=True)
    
@spaces.GPU
def infer(lora_1_id, lora_1_sfts, lora_2_id, lora_2_sfts, prompt, negative_prompt, lora_1_scale, lora_2_scale, seed, profile: gr.OAuthProfile | None):

    unet = copy.deepcopy(original_pipe.unet)
    text_encoder = copy.deepcopy(original_pipe.text_encoder)
    text_encoder_2 = copy.deepcopy(original_pipe.text_encoder_2)

    pipe = StableDiffusionXLPipeline(
        vae = original_pipe.vae,
        text_encoder = text_encoder,
        text_encoder_2 = text_encoder_2,
        scheduler = original_pipe.scheduler,
        tokenizer = original_pipe.tokenizer,
        tokenizer_2 = original_pipe.tokenizer_2,
        unet = unet
    )

    pipe.to("cuda")

    if lora_1_sfts == "NO SAFETENSORS FILE": 
        pipe.load_lora_weights(
            lora_1_id,     
            low_cpu_mem_usage = True,
            use_auth_token = True
        )

    else:
        pipe.load_lora_weights(
            lora_1_id,
            weight_name = lora_1_sfts,        
            low_cpu_mem_usage = True,
            use_auth_token = True
        )

    

    pipe.fuse_lora(lora_1_scale)

    if lora_2_sfts == "NO SAFETENSORS FILE": 
        pipe.load_lora_weights(
            lora_2_id,     
            low_cpu_mem_usage = True,
            use_auth_token = True
        )

    else:
        pipe.load_lora_weights(
            lora_2_id,
            weight_name = lora_2_sfts,        
            low_cpu_mem_usage = True,
            use_auth_token = True
        )


    pipe.fuse_lora(lora_2_scale)

    if negative_prompt == "" :
        negative_prompt = None
    
    if seed < 0 :
        seed = random.randint(0, 423538377342)
    
    generator = torch.Generator(device="cuda").manual_seed(seed)

    image = pipe(
        prompt = prompt,
        negative_prompt = negative_prompt,
        num_inference_steps = 25,
        width = 1024,
        height = 1024,
        generator = generator
    ).images[0]

    pipe.unfuse_lora()

    # save generated images (if logged in)
    user_history.save_image(label=prompt, image=image, profile=profile, metadata={
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "lora_1_repo_id": lora_1_id,
        "lora_2_repo_id": lora_2_id,
        "lora_1_scale": lora_1_scale,
        "lora_2_scale": lora_2_scale,
        "seed": seed,
    })

    return image, seed

css="""
#col-container{
    margin: 0 auto;
    max-width: 750px;
    text-align: left;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 10px 5px;
    margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):

        if is_shared_ui:
            top_description = gr.HTML(f'''
                <div class="gr-prose">
                    <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                    Note: you might want to use private custom LoRa models</h2>
                    <p class="main-message">
                        To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br />
                    </p>
                    <p class="actions">
                        <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                        </a>
                        to start using private models and skip the queue
                    </p>
                </div>
            ''', elem_id="warning-duplicate")

        title = gr.HTML(
        '''
        <h1 style="text-align: center;">SD-XL LoRA Fusion</h1>
        <p style="text-align: center;">
        Fuse 2 custom StableDiffusion-XL LoRa models <br />
        If you are running this demo in a duplicated private space, all your private LoRa models tagged ["Diffusers", "stable-diffusion-sd-xl", "lora"] will be automatically listed in LoRa IDs dropdowns
        </p>
        '''
        )
        
        # PART 1 • MODELS
        if not is_shared_ui:
            your_username = api.whoami()["name"]
            my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
            model_names = [item.modelId for item in my_models]
            
            #print(model_names)           
            
        with gr.Row():
                
            with gr.Column():

                if not is_shared_ui:
                    lora_1_id = gr.Dropdown(
                        label = "LoRa 1 ID",
                        choices = model_names,
                        allow_custom_value = True
                        #placeholder = "username/model_id"
                    )
                else:
                    lora_1_id = gr.Textbox(
                        label = "LoRa 1 ID",
                        placeholder = "username/model_id"
                    )
                    
                lora_1_sfts = gr.Dropdown(
                    label = "Safetensors file",
                    visible=False
                )

                instance_prompt_1 = gr.Textbox(
                    label = "Trigger Word 1",
                    visible = False,
                    interactive = False
                )
                
            with gr.Column():

                if not is_shared_ui:
                    lora_2_id = gr.Dropdown(
                        label = "LoRa 2 ID",
                        choices = model_names,
                        allow_custom_value = True
                        #placeholder = "username/model_id"
                    )
                else:
                    lora_2_id = gr.Textbox(
                        label = "LoRa 2 ID",
                        placeholder = "username/model_id"
                    )
    
                lora_2_sfts = gr.Dropdown(
                    label = "Safetensors file",
                    visible=False
                )

                instance_prompt_2 = gr.Textbox(
                    label = "Trigger Word 2",
                    visible = False,
                    interactive = False
                )
        
        load_models_btn = gr.Button("1. Load models and .safetensors")

        # PART 2 • INFERENCE
        with gr.Column():
            with gr.Row():
            
                prompt = gr.Textbox(
                    label = "Your prompt",
                    show_label = True,
                    info = "Use your trigger words into a coherent prompt",
                    placeholder = "e.g: a triggerWordOne portrait in triggerWord2 style"
                )
            # Advanced Settings
            with gr.Accordion("Advanced Settings", open=False):
                
                with gr.Row():
                    
                    lora_1_scale = gr.Slider(
                        label = "LoRa 1 scale",
                        minimum = 0,
                        maximum = 1,
                        step = 0.1,
                        value = 0.7
                    )
                    
                    lora_2_scale = gr.Slider(
                        label = "LoRa 2 scale",
                        minimum = 0,
                        maximum = 1,
                        step = 0.1,
                        value = 0.7
                    )
                
                negative_prompt = gr.Textbox(
                    label = "Negative prompt"
                )
    
                seed = gr.Slider(
                    label = "Seed",
                    info = "-1 denotes a random seed",
                    minimum = -1,
                    maximum = 423538377342,
                    value = -1
                )
    
                last_used_seed = gr.Number(
                    label = "Last used seed",
                    info = "the seed used in the last generation",
                )
                
            run_btn = gr.Button("2. Run", elem_id="run_button")
        
            output_image = gr.Image(
                label = "Output"
            )

        with gr.Accordion("Past generations", open=False):
            user_history.render()

        
    
    # ACTIONS
    load_models_btn.click(
        fn = load_sfts, 
        inputs = [
            lora_1_id,
            lora_2_id
        ],
        outputs = [
            lora_1_sfts,
            lora_2_sfts,
            instance_prompt_1,
            instance_prompt_2
        ],
        queue=False
    )
    run_btn.click(
        fn = infer,
        inputs = [
            lora_1_id,
            lora_1_sfts,
            lora_2_id,
            lora_2_sfts,
            prompt,
            negative_prompt,
            lora_1_scale,
            lora_2_scale,
            seed
        ],
        outputs = [
            output_image, 
            last_used_seed
        ]
    )

demo.queue(concurrency_count=2).launch()