multimodalart's picture
Update app.py
20706a7
raw
history blame
5.23 kB
import gradio as gr
from time import sleep
from diffusers import DiffusionPipeline
from huggingface_hub import hf_hub_download
import torch
import json
import random
import copy
lora_list = hf_hub_download(repo_id="multimodalart/LoraTheExplorer", filename="sdxl_loras.json", repo_type="space")
with open(lora_list, "r") as file:
data = json.load(file)
sdxl_loras = [
{
"image": item["image"] if item["image"].startswith("https://") else f'https://huggingface.co/spaces/multimodalart/LoraTheExplorer/resolve/main/{item["image"]}',
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_compatible": item["is_compatible"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
"is_nc": item.get("is_nc", False)
}
for item in data
]
saved_names = [
hf_hub_download(item["repo"], item["weights"]) for item in sdxl_loras
]
css = '''
#title{text-align:center}
#plus_column{align-self: center}
#plus_button{font-size: 250%; text-align: center}
.gradio-container{width: 700px !important; margin: 0 auto !important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 57px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
'''
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
original_pipe = copy.deepcopy(pipe)
#@spaces.GPU
def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, progress=gr.Progress(track_tqdm=True)):
print("Copying pipe")
pipe = copy.deepcopy(original_pipe)
print("Loading LoRAs")
pipe.load_lora_weights(shuffled_items[0]['repo'], weight_name=shuffled_items[0]['weights'])
pipe.fuse_lora(lora_1_scale)
pipe.load_lora_weights(shuffled_items[1]['repo'], weight_name=shuffled_items[1]['weights'])
pipe.fuse_lora(lora_2_scale)
pipe.to(torch_dtype=torch.float16)
pipe.to("cuda")
if negative_prompt == "":
negative_prompt = False
print("Running inference")
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=25, guidance_scale=7).images[0]
return image
def get_description(item):
trigger_word = item["trigger_word"]
return f"LoRA trigger word: `{trigger_word}`" if trigger_word else "LoRA trigger word: `none`, will be applied automatically", trigger_word
def shuffle_images():
compatible_items = [item for item in data if item['is_compatible']]
random.shuffle(compatible_items)
two_shuffled_items = compatible_items[:2]
title_1 = gr.update(label=two_shuffled_items[0]['title'], value=two_shuffled_items[0]['image'])
title_2 = gr.update(label=two_shuffled_items[1]['title'], value=two_shuffled_items[1]['image'])
description_1, trigger_word_1 = get_description(two_shuffled_items[0])
description_2, trigger_word_2 = get_description(two_shuffled_items[1])
prompt = gr.update(value=f"{trigger_word_1} {trigger_word_2}")
return title_1,description_1,title_2,description_2,prompt, two_shuffled_items
with gr.Blocks(css=css) as demo:
shuffled_items = gr.State()
title = gr.HTML(
'''<h1>LoRA Roulette 🎲</h1>
<h4>Two LoRAs are loaded to SDXL at random, find a fun way to combine them 🎨</h4>
''',
elem_id="title"
)
with gr.Row():
with gr.Column(min_width=10, scale=6):
lora_1 = gr.Image(interactive=False, height=300)
lora_1_prompt = gr.Markdown()
with gr.Column(min_width=10, scale=1, elem_id="plus_column"):
plus = gr.HTML("+", elem_id="plus_button")
with gr.Column(min_width=10, scale=6):
lora_2 = gr.Image(interactive=False, height=300)
lora_2_prompt = gr.Markdown()
with gr.Row():
prompt = gr.Textbox(label="Your prompt", info="arrange the trigger words of the two LoRAs in a coherent sentence", interactive=True, elem_id="prompt")
run_btn = gr.Button("Run", elem_id="run_button")
output_image = gr.Image()
with gr.Accordion("Advanced settings", open=False):
negative_prompt = gr.Textbox(label="Negative prompt")
with gr.Row():
lora_1_scale = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=1, step=0.1, value=0.7)
lora_2_scale = gr.Slider(label="LoRa 2 Scale", minimum=0, maximum=1, step=0.1, value=0.7)
shuffle_button = gr.Button("Reshuffle LoRAs!")
demo.load(shuffle_images, inputs=[], outputs=[lora_1,lora_1_prompt,lora_2,lora_2_prompt, prompt, shuffled_items], queue=False, show_progress="hidden")
shuffle_button.click(shuffle_images, outputs=[lora_1,lora_1_prompt,lora_2,lora_2_prompt, prompt, shuffled_items], queue=False, show_progress="hidden")
run_btn.click(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image])
prompt.submit(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image])
demo.queue()
demo.launch()