Spaces:
Sleeping
Sleeping
import gradio as gr | |
from time import sleep | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import torch | |
import json | |
import random | |
import copy | |
import gc | |
lora_list = hf_hub_download(repo_id="multimodalart/LoraTheExplorer", filename="sdxl_loras.json", repo_type="space") | |
with open(lora_list, "r") as file: | |
data = json.load(file) | |
sdxl_loras = [ | |
{ | |
"image": item["image"] if item["image"].startswith("https://") else f'https://huggingface.co/spaces/multimodalart/LoraTheExplorer/resolve/main/{item["image"]}', | |
"title": item["title"], | |
"repo": item["repo"], | |
"trigger_word": item["trigger_word"], | |
"weights": item["weights"], | |
"is_compatible": item["is_compatible"], | |
"is_pivotal": item.get("is_pivotal", False), | |
"text_embedding_weights": item.get("text_embedding_weights", None), | |
"is_nc": item.get("is_nc", False) | |
} | |
for item in data | |
] | |
for item in sdxl_loras: | |
saved_name = hf_hub_download(item["repo"], item["weights"]) | |
if saved_name.endswith('.safetensors'): | |
state_dict = load_file(saved_name) | |
else: | |
state_dict = torch.load(saved_name) | |
item["saved_name"] = saved_name | |
item["state_dict"] = state_dict #{k: v.to(device="cuda", dtype=torch.float16) for k, v in state_dict.items() if torch.is_tensor(v)} | |
css = ''' | |
#title{text-align:center;} | |
#title h1{font-size: 250%} | |
.selected_random img{object-fit: cover} | |
.plus_column{align-self: center} | |
.plus_button{font-size: 235% !important; text-align: center;margin-bottom: 19px} | |
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
#run_button{position:absolute;margin-top: 12px;right: 0;margin-right: 1.5em;border-bottom-left-radius: 0px; | |
border-top-left-radius: 0px;} | |
.random_column{align-self: center} | |
@media (max-width: 1024px) { | |
.roulette_group{flex-direction: column} | |
} | |
''' | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) | |
original_pipe = copy.deepcopy(pipe) | |
def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, progress=gr.Progress(track_tqdm=True)): | |
pipe = copy.deepcopy(original_pipe) | |
pipe.to("cuda") | |
pipe.load_lora_weights(shuffled_items[0]['state_dict']) | |
pipe.fuse_lora(lora_1_scale) | |
pipe.load_lora_weights(shuffled_items[1]['state_dict']) | |
pipe.fuse_lora(lora_2_scale) | |
if negative_prompt == "": | |
negative_prompt = False | |
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=20, width=768, height=768).images[0] | |
del pipe | |
gc.collect() | |
torch.cuda.empty_cache() | |
return image | |
def get_description(item): | |
trigger_word = item["trigger_word"] | |
return f"Trigger: `{trigger_word}`" if trigger_word else "No trigger word, will be applied automatically", trigger_word | |
def shuffle_images(): | |
compatible_items = [item for item in sdxl_loras if item['is_compatible']] | |
random.shuffle(compatible_items) | |
two_shuffled_items = compatible_items[:2] | |
title_1 = gr.update(label=two_shuffled_items[0]['title'], value=two_shuffled_items[0]['image']) | |
title_2 = gr.update(label=two_shuffled_items[1]['title'], value=two_shuffled_items[1]['image']) | |
description_1, trigger_word_1 = get_description(two_shuffled_items[0]) | |
description_2, trigger_word_2 = get_description(two_shuffled_items[1]) | |
prompt_description_1 = gr.update(value=description_1, visible=True) | |
prompt_description_2 = gr.update(value=description_2, visible=True) | |
prompt = gr.update(value=f"{trigger_word_1} {trigger_word_2}") | |
return title_1, prompt_description_1, title_2, prompt_description_2, prompt, two_shuffled_items | |
with gr.Blocks(css=css) as demo: | |
shuffled_items = gr.State() | |
title = gr.HTML( | |
'''<h1>LoRA Roulette 🎲</h1> | |
''', | |
elem_id="title" | |
) | |
with gr.Row(elem_classes="roulette_group"): | |
with gr.Column(min_width=10, scale=16, elem_classes="plus_column"): | |
gr.HTML("<p>This 2 random LoRAs are loaded to SDXL, find a fun way to combine them 🎨</p>") | |
with gr.Row(): | |
with gr.Column(min_width=10, scale=8, elem_classes="random_column"): | |
lora_1 = gr.Image(interactive=False, height=263, elem_classes="selected_random") | |
lora_1_prompt = gr.Markdown(visible=False) | |
with gr.Column(min_width=10, scale=1, elem_classes="plus_column"): | |
plus = gr.HTML("+", elem_classes="plus_button") | |
with gr.Column(min_width=10, scale=8, elem_classes="random_column"): | |
lora_2 = gr.Image(interactive=False, height=263, elem_classes="selected_random") | |
lora_2_prompt = gr.Markdown(visible=False) | |
with gr.Column(min_width=10, scale=1, elem_classes="plus_column"): | |
equal = gr.HTML("=", elem_classes="plus_button") | |
with gr.Column(min_width=10, scale=14): | |
with gr.Box(): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Your prompt", show_label=False, interactive=True, elem_id="prompt") | |
run_btn = gr.Button("Run", elem_id="run_button") | |
output_image = gr.Image(label="Output", height=355) | |
with gr.Accordion("Advanced settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative prompt") | |
with gr.Row(): | |
lora_1_scale = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=1, step=0.1, value=0.7) | |
lora_2_scale = gr.Slider(label="LoRa 2 Scale", minimum=0, maximum=1, step=0.1, value=0.7) | |
shuffle_button = gr.Button("Reshuffle!") | |
demo.load(shuffle_images, inputs=[], outputs=[lora_1, lora_1_prompt, lora_2, lora_2_prompt, prompt, shuffled_items], queue=False, show_progress="hidden") | |
shuffle_button.click(shuffle_images, outputs=[lora_1, lora_1_prompt, lora_2, lora_2_prompt, prompt, shuffled_items], queue=False, show_progress="hidden") | |
run_btn.click(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image]) | |
prompt.submit(merge_and_run, inputs=[prompt, negative_prompt, shuffled_items, lora_1_scale, lora_2_scale], outputs=[output_image]) | |
demo.queue() | |
demo.launch() |