Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import login, HfFileSystem, HfApi | |
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline | |
import torch | |
import copy | |
import os | |
import spaces | |
import random | |
is_shared_ui = True if "fffiloni/sd-xl-lora-fusion" in os.environ['SPACE_ID'] else False | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token = hf_token) | |
fs = HfFileSystem(token=hf_token) | |
api = HfApi() | |
original_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) | |
def get_files(file_paths): | |
last_files = {} # Dictionary to store the last file for each path | |
for file_path in file_paths: | |
# Split the file path into directory and file components | |
directory, file_name = file_path.rsplit('/', 1) | |
# Update the last file for the current path | |
last_files[directory] = file_name | |
# Extract the last files from the dictionary | |
result = list(last_files.values()) | |
return result | |
def load_sfts(repo_1_id, repo_2_id): | |
your_username = api.whoami()["name"] | |
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora']) | |
model_names = [item.modelId for item in my_models] | |
print(model_names) | |
# List all ".safetensors" files in repos | |
sfts_available_files_1 = fs.glob(f"{repo_1_id}/*.safetensors") | |
sfts_available_files_1 = get_files(sfts_available_files_1) | |
sfts_available_files_2 = fs.glob(f"{repo_2_id}/*.safetensors") | |
sfts_available_files_2 = get_files(sfts_available_files_2) | |
return gr.update(choices=sfts_available_files_1, value=sfts_available_files_1[0], visible=True), gr.update(choices=sfts_available_files_2, value=sfts_available_files_2[0], visible=True) | |
def infer(lora_1_id, lora_1_sfts, lora_2_id, lora_2_sfts, prompt, negative_prompt, lora_1_scale, lora_2_scale, seed): | |
unet = copy.deepcopy(original_pipe.unet) | |
text_encoder = copy.deepcopy(original_pipe.text_encoder) | |
text_encoder_2 = copy.deepcopy(original_pipe.text_encoder_2) | |
pipe = StableDiffusionXLPipeline( | |
vae = original_pipe.vae, | |
text_encoder = text_encoder, | |
text_encoder_2 = text_encoder_2, | |
scheduler = original_pipe.scheduler, | |
tokenizer = original_pipe.tokenizer, | |
tokenizer_2 = original_pipe.tokenizer_2, | |
unet = unet | |
) | |
pipe.to("cuda") | |
pipe.load_lora_weights( | |
lora_1_id, | |
weight_name = lora_1_sfts, | |
low_cpu_mem_usage = True, | |
use_auth_token = True | |
) | |
pipe.fuse_lora(lora_1_scale) | |
pipe.load_lora_weights( | |
lora_2_id, | |
weight_name = lora_2_sfts, | |
low_cpu_mem_usage = True, | |
use_auth_token = True | |
) | |
pipe.fuse_lora(lora_2_scale) | |
if negative_prompt == "" : | |
negative_prompt = None | |
if seed < 0 : | |
seed = random.randint(0, 423538377342) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
num_inference_steps = 25, | |
width = 1024, | |
height = 1024, | |
generator = generator | |
).images[0] | |
pipe.unfuse_lora() | |
return image, seed | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 680px; | |
text-align: left; | |
} | |
div#warning-duplicate { | |
background-color: #ebf5ff; | |
padding: 0 10px 5px; | |
margin: 20px 0; | |
} | |
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { | |
color: #0f4592!important; | |
} | |
div#warning-duplicate strong { | |
color: #0f4592; | |
} | |
p.actions { | |
display: flex; | |
align-items: center; | |
margin: 20px 0; | |
} | |
div#warning-duplicate .actions a { | |
display: inline-block; | |
margin-right: 10px; | |
} | |
#prompt{padding: 0 0 1em 0} | |
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
#run_button{position: absolute;margin-top: 25.8px;right: 0;margin-right: 0.75em;border-bottom-left-radius: 0px;border-top-left-radius: 0px} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
if is_shared_ui: | |
top_description = gr.HTML(f''' | |
<div class="gr-prose"> | |
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
Note: you might want to use private custom LoRa models</h2> | |
<p class="main-message"> | |
To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br /> | |
</p> | |
<p class="actions"> | |
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> | |
</a> | |
to start using private models and skip the queue | |
</p> | |
</div> | |
''', elem_id="warning-duplicate") | |
title = gr.HTML( | |
''' | |
<h1 style="text-align: center;">LoRA Fusion</h1> | |
<p style="text-align: center;">Fuse 2 custom LoRa models</p> | |
''' | |
) | |
# PART 1 • MODELS | |
with gr.Row(): | |
with gr.Column(): | |
if is_shared_ui: | |
lora_1_id = gr.Dropdown( | |
label = "LoRa 1 ID", | |
#choices = my_models, | |
allow_custom_value = True | |
#placeholder = "username/model_id" | |
) | |
else: | |
lora_1_id = gr.Textbox( | |
label = "LoRa 1 ID", | |
placeholder = "username/model_id" | |
) | |
lora_1_sfts = gr.Dropdown( | |
label = "Safetensors file", | |
visible=False | |
) | |
with gr.Column(): | |
lora_2_id = gr.Textbox( | |
label = "LoRa 2 ID", | |
placeholder = "username/model_id" | |
) | |
lora_2_sfts = gr.Dropdown( | |
label = "Safetensors file", | |
visible=False | |
) | |
load_models_btn = gr.Button("Load models and .safetensors") | |
# PART 2 • INFERENCE | |
with gr.Box(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label = "Your prompt", | |
show_label = False, | |
info = "Use your trigger words into a coherent prompt", | |
placeholder = "e.g: a triggerWordOne portrait in triggerWord2 style" | |
) | |
run_btn = gr.Button("Run", elem_id="run_button") | |
output_image = gr.Image( | |
label = "Output" | |
) | |
# Advanced Settings | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
lora_1_scale = gr.Slider( | |
label = "LoRa 1 scale", | |
minimum = 0, | |
maximum = 1, | |
step = 0.1, | |
value = 0.7 | |
) | |
lora_2_scale = gr.Slider( | |
label = "LoRa 2 scale", | |
minimum = 0, | |
maximum = 1, | |
step = 0.1, | |
value = 0.7 | |
) | |
negative_prompt = gr.Textbox( | |
label = "Negative prompt" | |
) | |
seed = gr.Slider( | |
label = "Seed", | |
info = "-1 denotes a random seed", | |
minimum = -1, | |
maximum = 423538377342, | |
value = -1 | |
) | |
last_used_seed = gr.Number( | |
label = "Last used seed", | |
info = "the seed used in the last generation", | |
) | |
# ACTIONS | |
load_models_btn.click( | |
fn = load_sfts, | |
inputs = [ | |
lora_1_id, | |
lora_2_id | |
], | |
outputs = [ | |
lora_1_sfts, | |
lora_2_sfts | |
] | |
) | |
run_btn.click( | |
fn = infer, | |
inputs = [ | |
lora_1_id, | |
lora_1_sfts, | |
lora_2_id, | |
lora_2_sfts, | |
prompt, | |
negative_prompt, | |
lora_1_scale, | |
lora_2_scale, | |
seed | |
], | |
outputs = [ | |
output_image, | |
last_used_seed | |
] | |
) | |
demo.queue(concurrency_count=2).launch() | |