multimodalart HF staff commited on
Commit
2f40f84
1 Parent(s): 7efd9a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -31,6 +31,9 @@ saved_names = [
31
  hf_hub_download(item["repo"], item["weights"]) for item in sdxl_loras
32
  ]
33
 
 
 
 
34
  css = '''
35
  #title{text-align:center}
36
  #plus_column{align-self: center}
@@ -41,19 +44,18 @@ css = '''
41
  border-top-left-radius: 0px;}
42
  '''
43
 
44
-
45
-
46
  #@spaces.GPU
47
  def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, progress=gr.Progress(track_tqdm=True)):
48
  pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
 
 
49
  print("Loading LoRAs")
50
- pipe.load_lora_weights(shuffled_items[0]['repo'], weight_name=shuffled_items[0]['weights'])
51
  pipe.fuse_lora(lora_1_scale)
52
- pipe.load_lora_weights(shuffled_items[1]['repo'], weight_name=shuffled_items[1]['weights'])
53
  pipe.fuse_lora(lora_2_scale)
54
 
55
- pipe.to(torch_dtype=torch.float16)
56
- pipe.to("cuda")
57
  if negative_prompt == "":
58
  negative_prompt = False
59
  print("Running inference")
 
31
  hf_hub_download(item["repo"], item["weights"]) for item in sdxl_loras
32
  ]
33
 
34
+ for item, saved_name in zip(sdxl_loras, saved_names):
35
+ item["saved_name"] = saved_name
36
+
37
  css = '''
38
  #title{text-align:center}
39
  #plus_column{align-self: center}
 
44
  border-top-left-radius: 0px;}
45
  '''
46
 
 
 
47
  #@spaces.GPU
48
  def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, progress=gr.Progress(track_tqdm=True)):
49
  pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
50
+ pipe.to(torch_dtype=torch.float16)
51
+ pipe.to("cuda")
52
  print("Loading LoRAs")
53
+ pipe.load_lora_weights(shuffled_items[0]['saved_name'])
54
  pipe.fuse_lora(lora_1_scale)
55
+ pipe.load_lora_weights(shuffled_items[1]['saved_name'])
56
  pipe.fuse_lora(lora_2_scale)
57
 
58
+
 
59
  if negative_prompt == "":
60
  negative_prompt = False
61
  print("Running inference")