import gradio as gr from huggingface_hub import login, HfFileSystem, HfApi from diffusers import DiffusionPipeline, StableDiffusionXLPipeline import torch import copy import os import spaces import random is_shared_ui = True if "fffiloni/sd-xl-lora-fusion" in os.environ['SPACE_ID'] else False hf_token = os.environ.get("HF_TOKEN") login(token = hf_token) fs = HfFileSystem(token=hf_token) api = HfApi() original_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) def get_files(file_paths): last_files = {} # Dictionary to store the last file for each path for file_path in file_paths: # Split the file path into directory and file components directory, file_name = file_path.rsplit('/', 1) # Update the last file for the current path last_files[directory] = file_name # Extract the last files from the dictionary result = list(last_files.values()) return result def load_sfts(repo_1_id, repo_2_id): # List all ".safetensors" files in repos sfts_available_files_1 = fs.glob(f"{repo_1_id}/*.safetensors") sfts_available_files_1 = get_files(sfts_available_files_1) sfts_available_files_2 = fs.glob(f"{repo_2_id}/*.safetensors") sfts_available_files_2 = get_files(sfts_available_files_2) return gr.update(choices=sfts_available_files_1, value=sfts_available_files_1[0], visible=True), gr.update(choices=sfts_available_files_2, value=sfts_available_files_2[0], visible=True) @spaces.GPU def infer(lora_1_id, lora_1_sfts, lora_2_id, lora_2_sfts, prompt, negative_prompt, lora_1_scale, lora_2_scale, seed): unet = copy.deepcopy(original_pipe.unet) text_encoder = copy.deepcopy(original_pipe.text_encoder) text_encoder_2 = copy.deepcopy(original_pipe.text_encoder_2) pipe = StableDiffusionXLPipeline( vae = original_pipe.vae, text_encoder = text_encoder, text_encoder_2 = text_encoder_2, scheduler = original_pipe.scheduler, tokenizer = original_pipe.tokenizer, tokenizer_2 = original_pipe.tokenizer_2, unet = unet ) pipe.to("cuda") pipe.load_lora_weights( lora_1_id, weight_name = lora_1_sfts, low_cpu_mem_usage = True, use_auth_token = True ) pipe.fuse_lora(lora_1_scale) pipe.load_lora_weights( lora_2_id, weight_name = lora_2_sfts, low_cpu_mem_usage = True, use_auth_token = True ) pipe.fuse_lora(lora_2_scale) if negative_prompt == "" : negative_prompt = None if seed < 0 : seed = random.randint(0, 423538377342) generator = torch.Generator(device="cuda").manual_seed(seed) image = pipe( prompt = prompt, negative_prompt = negative_prompt, num_inference_steps = 25, width = 1024, height = 1024, generator = generator ).images[0] pipe.unfuse_lora() return image, seed css=""" #col-container{ margin: 0 auto; max-width: 750px; text-align: left; } div#warning-duplicate { background-color: #ebf5ff; padding: 0 10px 5px; margin: 20px 0; } div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { color: #0f4592!important; } div#warning-duplicate strong { color: #0f4592; } p.actions { display: flex; align-items: center; margin: 20px 0; } div#warning-duplicate .actions a { display: inline-block; margin-right: 10px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): if is_shared_ui: top_description = gr.HTML(f'''
Fuse 2 custom StableDiffusion-XL LoRa models
If you are running this demo in a duplicated private space, all your private LoRa models tagged will be automatically listed in LoRa IDs dropdowns