import gradio as gr from huggingface_hub import login from diffusers import DiffusionPipeline, StableDiffusionXLPipeline import torch import copy import os import spaces import random hf_token = os.environ.get("HF_TOKEN") login(token = hf_token) original_pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) @spaces.GPU def infer(lora_1_id, lora_1_sfts, lora_2_id, lora_2_sfts, prompt, negative_prompt, lora_1_scale, lora_2_scale, seed): unet = copy.deepcopy(original_pipe.unet) text_encoder = copy.deepcopy(original_pipe.text_encoder) text_encoder_2 = copy.deepcopy(original_pipe.text_encoder_2) pipe = StableDiffusionXLPipeline( vae = original_pipe.vae, text_encoder = text_encoder, text_encoder_2 = text_encoder_2, scheduler = original_pipe.scheduler, tokenizer = original_pipe.tokenizer, tokenizer_2 = original_pipe.tokenizer_2, unet = unet ) pipe.to("cuda") pipe.load_lora_weights( lora_1_id, weight_name = lora_1_sfts, low_cpu_mem_usage = True, use_auth_token = True ) pipe.fuse_lora(lora_1_scale) pipe.load_lora_weights( lora_2_id, weight_name = lora_2_sfts, low_cpu_mem_usage = True, use_auth_token = True ) pipe.fuse_lora(lora_2_scale) if negative_prompt == "" : negative_prompt = None if seed < 0 : seed = random.randit(0, 423538377342) generator = torch.Generator(device="cuda").manual_seed(seed) image = pipe( prompt = prompt, negative_prompt = negative_prompt, num_inference_steps = 25, width = 1024, height = 1024, generator = generator ).images[0] return image, seed with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): title = gr.HTML( '''
Fuse 2 custom LoRa models
''' ) # PART 1 • MODELS with gr.Row(): with gr.Column(): lora_1_id = gr.Textbox( label = "LoRa 1 ID", placeholder = "username/model_id" ) lora_1_sfts = gr.Textbox( label = "Safetensors file", placeholder = "specific_chosen.safetensors" ) with gr.Column(): lora_2_id = gr.Textbox( label = "LoRa 2 ID", placeholder = "username/model_id" ) lora_2_sfts = gr.Textbox( label = "Safetensors file", placeholder = "specific_chosen.safetensors" ) # PART 2 • INFERENCE with gr.Row(): prompt = gr.Textbox( label = "Your prompt", info = "Use your trigger words into a coherent prompt", placeholde = "e.g: a triggerWordOne portrait in triggerWord2 style" ) run_btn = gr.Button("Run") output_image = gr.Image( label = "Output" ) # Advanced Settings with gr.Accordion("Advanced Settings", open=False): with gr.Row(): lora_1_scale = gr.Slider( label = "LoRa 1 scale", minimum = 0, maximum = 1, step = 0.1, value = 0.7 ) lora_2_scale = gr.Slider( label = "LoRa 2 scale", minimum = 0, maximum = 1, step = 0.1, value = 0.7 ) negative_prompt = gr.Textbox( label = "Negative prompt" ) seed = gr.Slider( label = "Seed", info = "-1 denotes a random seed", minimum = -1, maximum = 423538377342, value = -1 ) last_used_seed = gr.Number( label = "Last used seed", info = "the seed used in the last generation", ) # ACTIONS run_btn.click( fn = infer, inputs = [ lora_1_id, lora_1_sfts, lora_2_id, lora_2_sfts, prompt, negative_prompt, lora_1_scale, lora_2_scale, seed ], outputs = [ output_image, last_used_seed ] ) demo.queue(concurrency_count=2).launch()