Spaces:
Sleeping
Sleeping
File size: 2,949 Bytes
87d91a7 2419492 3651eaa 2419492 3651eaa 62b2a7f 3651eaa 62b2a7f d48fe1d 3651eaa 510810d 2419492 c1071da 510810d 089e6cb 3651eaa 0699667 83f75b0 672cfcb c058625 71e48de c058625 a05d9c5 c058625 510810d c1071da 510810d c058625 1580929 62b2a7f a05d9c5 510810d c1071da 510810d c058625 71e48de 83f75b0 71e48de c058625 7d3dd84 c058625 2c60f43 0699667 c058625 3651eaa c058625 0699667 c058625 3651eaa c058625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import gradio as gr
from huggingface_hub import login
import os
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
#vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.to("cuda")
generator = torch.Generator(device="cuda")
#pipe.enable_model_cpu_offload()
def infer(model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed):
custom_model = model_name
# This is where you load your trained weights
pipe.load_lora_weights(custom_model, weight_name="pytorch_lora_weights.safetensors", use_auth_token=True)
prompt = prompt
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
image = load_image(image_in)
#controlnet_conditioning_scale = 0.25 # recommended for good generalization
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
lora_scale= 0.9
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale = guidance_scale,
num_inference_steps=50,
generator=generator.manual_seed(seed),
cross_attention_kwargs={"scale": lora_scale}
).images
images[0].save(f"hug_lab.png")
return f"hug_lab.png"
with gr.Blocks() as demo:
with gr.Column():
model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
image_in = gr.Image(source="upload", type="filepath")
prompt = gr.Textbox(label="Prompt")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
submit_btn = gr.Button("Submit")
result = gr.Image(label="Result")
submit_btn.click(
fn = infer,
inputs = [model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed],
outputs = [result]
)
demo.queue().launch()
|