Spaces:
Running
on
A10G
Running
on
A10G
File size: 14,959 Bytes
87d91a7 4c31ad4 2419492 4c31ad4 a066e08 2419492 067da29 2419492 4c31ad4 a7f51c5 3651eaa 2419492 be9073e 331eca2 3d0321b a045576 4c31ad4 331eca2 4c31ad4 510810d 4c31ad4 3651eaa 4c31ad4 0699667 4c31ad4 c058625 4c31ad4 2ca2323 fe44d63 a4f5d8c 4c31ad4 238d2f7 4c31ad4 a7f51c5 067da29 331eca2 2ca2323 7f39ca4 e4f207a d243a94 e4f207a 643afc0 e4f207a d243a94 643afc0 d243a94 643afc0 d243a94 805eae6 d243a94 1f92b86 d243a94 c4d69bf 331eca2 067da29 66af8e6 067da29 331eca2 4c31ad4 331eca2 a231571 7f39ca4 00f4438 331eca2 7f39ca4 00f4438 331eca2 c058625 7f39ca4 83f75b0 5d917f0 d8b3f03 c058625 8f2831f c1e58aa 1069a6c 8f2831f 067da29 e8fb777 067da29 4c31ad4 6dbf1c8 8f2831f 067da29 8f2831f 067da29 6dbf1c8 3073f7f 6dbf1c8 8f7b910 067da29 6dbf1c8 067da29 331eca2 35f5939 331eca2 8f2831f 038916c fe44d63 4c31ad4 b1e374f 4c31ad4 0eb700f a045576 750a833 a045576 750a833 a045576 805eae6 750a833 a045576 c058625 4c31ad4 5d917f0 a045576 a4767c1 a045576 4c31ad4 c058625 4c31ad4 c058625 3651eaa 238d2f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import gradio as gr
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
import os
import spaces
import random
import torch
is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] else False
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
fs = HfFileSystem(token=hf_token)
api = HfApi()
device="cuda" if torch.cuda.is_available() else "cpu"
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
def check_use_custom_or_no(value):
if value is True:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def get_files(file_paths):
last_files = {} # Dictionary to store the last file for each path
for file_path in file_paths:
# Split the file path into directory and file components
directory, file_name = file_path.rsplit('/', 1)
# Update the last file for the current path
last_files[directory] = file_name
# Extract the last files from the dictionary
result = list(last_files.values())
return result
def load_model(model_name):
if model_name == "":
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
raise gr.Error("You forgot to define Model ID.")
# Get instance_prompt a.k.a trigger word
card = ModelCard.load(model_name)
repo_data = card.data.to_dict()
instance_prompt = repo_data.get("instance_prompt")
if instance_prompt is not None:
print(f"Trigger word: {instance_prompt}")
else:
instance_prompt = "no trigger word needed"
print(f"Trigger word: no trigger word needed")
# List all ".safetensors" files in repo
sfts_available_files = fs.glob(f"{model_name}/*safetensors")
sfts_available_files = get_files(sfts_available_files)
if sfts_available_files == []:
sfts_available_files = ["NO SAFETENSORS FILE"]
print(f"Safetensors available: {sfts_available_files}")
return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)
def custom_model_changed(model_name, previous_model):
if model_name == "" and previous_model == "" :
status_message = ""
elif model_name != previous_model:
status_message = "model changed, please reload before any new run"
else:
status_message = "model ready"
return status_message
def resize_image(input_path, output_path, target_height):
# Open the input image
img = Image.open(input_path)
# Calculate the aspect ratio of the original image
original_width, original_height = img.size
original_aspect_ratio = original_width / original_height
# Calculate the new width while maintaining the aspect ratio and the target height
new_width = int(target_height * original_aspect_ratio)
# Resize the image while maintaining the aspect ratio and fixing the height
img = img.resize((new_width, target_height), Image.LANCZOS)
# Save the resized image
img.save(output_path)
return output_path
@spaces.GPU
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
prompt = prompt
negative_prompt = negative_prompt
if seed < 0 :
seed = random.randint(0, 423538377342)
generator = torch.Generator(device=device).manual_seed(seed)
if image_in == None:
raise gr.Error("You forgot to upload a source image.")
image_in = resize_image(image_in, "resized_input.jpg", 1024)
if preprocessor == "canny":
image = load_image(image_in)
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
if preprocessor == "lineart":
image = Image.open(image_in)
image = image.convert("RGB")
image = np.array(image)
image = 255 - image
image = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained(
"TheMistoAI/MistoLine",
torch_dtype=torch.float16,
variant="fp16"
)
if preprocessor == "custom":
image = Image.open(image_in)
image = image.convert("RGB")
image = np.array(image)
image = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained(
"fffiloni/cn_malgras_second_002",
torch_dtype=torch.float16,
)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.to(device)
if use_custom_model:
if model_name == "":
raise gr.Error("you forgot to set a custom model name.")
custom_model = model_name
# This is where you load your trained weights
if weight_name == "NO SAFETENSORS FILE":
pipe.load_lora_weights(
custom_model,
low_cpu_mem_usage = True,
use_auth_token = True
)
else:
pipe.load_lora_weights(
custom_model,
weight_name = weight_name,
low_cpu_mem_usage = True,
use_auth_token = True
)
lora_scale=custom_lora_weight
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guidance_scale = float(guidance_scale),
num_inference_steps=inf_steps,
generator=generator,
cross_attention_kwargs={"scale": lora_scale}
).images
else:
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guidance_scale = float(guidance_scale),
num_inference_steps=inf_steps,
generator=generator,
).images
images[0].save(f"result.png")
#return f"result.png", seed
return [image, images[0]], seed
css="""
#col-container{
margin: 0 auto;
max-width: 720px;
text-align: left;
}
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 16px 16px;
margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
button#load_model_btn{
height: 46px;
}
#status_info{
font-size: 0.9em;
}
.custom-color {
color: #030303 !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
Note: you might want to use a <strong>private</strong> custom LoRa model</h2>
<p class="main-message custom-color">
To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br />
</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a>
to start using private models and skip the queue
</p>
</div>
''', elem_id="warning-duplicate")
gr.HTML("""
<h2 style="text-align: center;">SD-XL Control LoRas</h2>
<p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p>
""")
use_custom_model = gr.Checkbox(label="Use a custom pre-trained LoRa model ? (optional)", value=False, info="To use a private model, you'll need to duplicate the space with your own access token.")
with gr.Group(visible=False) as custom_model_box:
with gr.Row():
with gr.Column():
if not is_shared_ui:
your_username = api.whoami()["name"]
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
model_names = [item.modelId for item in my_models]
if not is_shared_ui:
custom_model = gr.Dropdown(
label = "Your custom model ID",
info="You can pick one of your private models",
choices = model_names,
allow_custom_value = True
#placeholder = "username/model_id"
)
else:
custom_model = gr.Textbox(
label="Your custom model ID",
placeholder="your_username/your_trained_model_name",
info="Make sure your model is set to PUBLIC"
)
weight_name = gr.Dropdown(
label="Safetensors file",
#value="pytorch_lora_weights.safetensors",
info="specify which one if model has several .safetensors files",
allow_custom_value=True,
visible = False
)
with gr.Column():
with gr.Group():
load_model_btn = gr.Button("Load my model", elem_id="load_model_btn")
previous_model = gr.Textbox(
visible = False
)
model_status = gr.Textbox(
label = "model status",
show_label = False,
elem_id = "status_info"
)
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
image_in = gr.Image(sources=["upload"], type="filepath")
with gr.Row():
with gr.Column():
with gr.Group():
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped")
with gr.Group():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=1.0, step=0.1, value=0.9)
with gr.Column():
with gr.Group():
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny", "lineart", "custom"], value="canny", interactive=True, info="For the moment, only canny is available")
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=1.0, step=0.01, value=0.5)
with gr.Group():
seed = gr.Slider(
label="Seed",
info = "-1 denotes a random seed",
minimum=-1,
maximum=423538377342,
step=1,
value=-1
)
last_used_seed = gr.Number(
label = "Last used seed",
info = "the seed used in the last generation",
)
submit_btn = gr.Button("Submit")
result = gr.Gallery(label="Result")
use_custom_model.change(
fn = check_use_custom_or_no,
inputs =[use_custom_model],
outputs = [custom_model_box],
queue = False
)
custom_model.blur(
fn=custom_model_changed,
inputs = [custom_model, previous_model],
outputs = [model_status],
queue = False
)
load_model_btn.click(
fn = load_model,
inputs=[custom_model],
outputs = [previous_model, model_status, weight_name, trigger_word],
queue = False
)
submit_btn.click(
fn = infer,
inputs = [use_custom_model, custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
outputs = [result, last_used_seed]
)
demo.queue(max_size=12).launch()
|