Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import login | |
import os | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token=hf_token) | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True | |
) | |
pipe.to("cuda") | |
#pipe.enable_model_cpu_offload() | |
def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed, progress=gr.Progress(track_tqdm=True)): | |
if preprocessor == "canny": | |
image = load_image(image_in) | |
image = np.array(image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
image = Image.fromarray(image) | |
if use_custom_model: | |
custom_model = model_name | |
# This is where you load your trained weights | |
pipe.load_lora_weights(custom_model, use_auth_token=True) | |
prompt = prompt | |
negative_prompt = negative_prompt | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
if use_custom_model: | |
lora_scale=custom_lora_weight | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale = guidance_scale, | |
num_inference_steps=steps, | |
generator=generator, | |
cross_attention_kwargs={"scale": lora_scale} | |
).images | |
else: | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale = guidance_scale, | |
num_inference_steps=steps, | |
generator=generator, | |
).images | |
images[0].save(f"result.png") | |
return f"result.png" | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 680px; | |
text-align: left; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(""" | |
<h2 style="text-align: center;">SD-XL Control LoRas</h2> | |
<p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p> | |
""") | |
image_in = gr.Image(source="upload", type="filepath") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured") | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5) | |
steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25) | |
with gr.Column(): | |
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available") | |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float") | |
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42) | |
use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.") | |
with gr.Row(): | |
model_name = gr.Textbox(label="Custom Model to use", placeholder="username/my_custom_public_model") | |
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9) | |
submit_btn = gr.Button("Submit") | |
result = gr.Image(label="Result") | |
submit_btn.click( | |
fn = infer, | |
inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed], | |
outputs = [result] | |
) | |
demo.queue().launch() | |