Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import login
|
3 |
import os
|
|
|
|
|
4 |
import torch
|
5 |
|
6 |
is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] else False
|
@@ -8,6 +10,9 @@ is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] e
|
|
8 |
hf_token = os.environ.get("HF_TOKEN")
|
9 |
login(token=hf_token)
|
10 |
|
|
|
|
|
|
|
11 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
@@ -24,22 +29,57 @@ controlnet = ControlNetModel.from_pretrained(
|
|
24 |
torch_dtype=torch.float16
|
25 |
)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
|
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
-
#
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def resize_image(input_path, output_path, target_height):
|
45 |
# Open the input image
|
@@ -61,8 +101,24 @@ def resize_image(input_path, output_path, target_height):
|
|
61 |
return output_path
|
62 |
|
63 |
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
prompt = prompt
|
65 |
negative_prompt = negative_prompt
|
|
|
|
|
|
|
|
|
66 |
generator = torch.Generator(device=device).manual_seed(seed)
|
67 |
|
68 |
if image_in == None:
|
@@ -88,7 +144,20 @@ def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_i
|
|
88 |
custom_model = model_name
|
89 |
|
90 |
# This is where you load your trained weights
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
lora_scale=custom_lora_weight
|
94 |
|
@@ -115,7 +184,7 @@ def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_i
|
|
115 |
|
116 |
images[0].save(f"result.png")
|
117 |
|
118 |
-
return f"result.png"
|
119 |
|
120 |
css="""
|
121 |
#col-container{
|
@@ -143,6 +212,12 @@ div#warning-duplicate .actions a {
|
|
143 |
display: inline-block;
|
144 |
margin-right: 10px;
|
145 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
"""
|
147 |
|
148 |
with gr.Blocks(css=css) as demo:
|
@@ -170,28 +245,100 @@ with gr.Blocks(css=css) as demo:
|
|
170 |
""")
|
171 |
|
172 |
image_in = gr.Image(source="upload", type="filepath")
|
|
|
173 |
with gr.Row():
|
|
|
174 |
with gr.Column():
|
175 |
prompt = gr.Textbox(label="Prompt")
|
176 |
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
|
177 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
|
178 |
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
|
|
|
179 |
with gr.Column():
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
submit_btn = gr.Button("Submit")
|
|
|
189 |
result = gr.Image(label="Result")
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
submit_btn.click(
|
192 |
fn = infer,
|
193 |
-
inputs = [use_custom_model,
|
194 |
-
outputs = [result]
|
195 |
)
|
196 |
|
197 |
demo.queue(max_size=12).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
|
3 |
import os
|
4 |
+
import spaces
|
5 |
+
import random
|
6 |
import torch
|
7 |
|
8 |
is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] else False
|
|
|
10 |
hf_token = os.environ.get("HF_TOKEN")
|
11 |
login(token=hf_token)
|
12 |
|
13 |
+
fs = HfFileSystem(token=hf_token)
|
14 |
+
api = HfApi()
|
15 |
+
|
16 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
|
|
29 |
torch_dtype=torch.float16
|
30 |
)
|
31 |
|
32 |
+
def get_files(file_paths):
|
33 |
+
last_files = {} # Dictionary to store the last file for each path
|
34 |
+
|
35 |
+
for file_path in file_paths:
|
36 |
+
# Split the file path into directory and file components
|
37 |
+
directory, file_name = file_path.rsplit('/', 1)
|
38 |
+
|
39 |
+
# Update the last file for the current path
|
40 |
+
last_files[directory] = file_name
|
41 |
+
|
42 |
+
# Extract the last files from the dictionary
|
43 |
+
result = list(last_files.values())
|
44 |
|
45 |
+
return result
|
46 |
|
47 |
+
def load_model(model_name):
|
48 |
|
49 |
+
if model_name == "":
|
50 |
+
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
|
51 |
+
raise gr.Error("You forgot to define Model ID.")
|
52 |
|
53 |
+
# Get instance_prompt a.k.a trigger word
|
54 |
+
card = ModelCard.load(model_name)
|
55 |
+
repo_data = card.data.to_dict()
|
56 |
+
instance_prompt = repo_data.get("instance_prompt")
|
57 |
|
58 |
+
if instance_prompt is not None:
|
59 |
+
print(f"Trigger word: {instance_prompt}")
|
60 |
+
else:
|
61 |
+
instance_prompt = "no trigger word needed"
|
62 |
+
print(f"Trigger word: no trigger word needed")
|
63 |
+
|
64 |
+
# List all ".safetensors" files in repo
|
65 |
+
sfts_available_files = fs.glob(f"{model_name}/*safetensors")
|
66 |
+
sfts_available_files = get_files(sfts_available_files)
|
67 |
+
|
68 |
+
if sfts_available_files == []:
|
69 |
+
sfts_available_files = ["NO SAFETENSORS FILE"]
|
70 |
+
|
71 |
+
print(f"Safetensors available: {sfts_available_files}")
|
72 |
+
|
73 |
+
return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)
|
74 |
+
|
75 |
+
def custom_model_changed(model_name, previous_model):
|
76 |
+
if model_name == "" and previous_model == "" :
|
77 |
+
status_message = ""
|
78 |
+
elif model_name != previous_model:
|
79 |
+
status_message = "model changed, please reload before any new run"
|
80 |
+
else:
|
81 |
+
status_message = "model ready"
|
82 |
+
return status_message
|
83 |
|
84 |
def resize_image(input_path, output_path, target_height):
|
85 |
# Open the input image
|
|
|
101 |
return output_path
|
102 |
|
103 |
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
|
104 |
+
|
105 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
106 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
107 |
+
controlnet=controlnet,
|
108 |
+
vae=vae,
|
109 |
+
torch_dtype=torch.float16,
|
110 |
+
variant="fp16",
|
111 |
+
use_safetensors=True
|
112 |
+
)
|
113 |
+
|
114 |
+
pipe.to(device)
|
115 |
+
|
116 |
prompt = prompt
|
117 |
negative_prompt = negative_prompt
|
118 |
+
|
119 |
+
if seed < 0 :
|
120 |
+
seed = random.randint(0, 423538377342)
|
121 |
+
|
122 |
generator = torch.Generator(device=device).manual_seed(seed)
|
123 |
|
124 |
if image_in == None:
|
|
|
144 |
custom_model = model_name
|
145 |
|
146 |
# This is where you load your trained weights
|
147 |
+
if weight_name == "NO SAFETENSORS FILE":
|
148 |
+
pipe.load_lora_weights(
|
149 |
+
custom_model,
|
150 |
+
low_cpu_mem_usage = True,
|
151 |
+
use_auth_token = True
|
152 |
+
)
|
153 |
+
|
154 |
+
else:
|
155 |
+
pipe.load_lora_weights(
|
156 |
+
custom_model,
|
157 |
+
weight_name = weight_name,
|
158 |
+
low_cpu_mem_usage = True,
|
159 |
+
use_auth_token = True
|
160 |
+
)
|
161 |
|
162 |
lora_scale=custom_lora_weight
|
163 |
|
|
|
184 |
|
185 |
images[0].save(f"result.png")
|
186 |
|
187 |
+
return f"result.png", seed
|
188 |
|
189 |
css="""
|
190 |
#col-container{
|
|
|
212 |
display: inline-block;
|
213 |
margin-right: 10px;
|
214 |
}
|
215 |
+
button#load_model_btn{
|
216 |
+
height: 46px;
|
217 |
+
}
|
218 |
+
#status_info{
|
219 |
+
font-size: 0.9em;
|
220 |
+
}
|
221 |
"""
|
222 |
|
223 |
with gr.Blocks(css=css) as demo:
|
|
|
245 |
""")
|
246 |
|
247 |
image_in = gr.Image(source="upload", type="filepath")
|
248 |
+
|
249 |
with gr.Row():
|
250 |
+
|
251 |
with gr.Column():
|
252 |
prompt = gr.Textbox(label="Prompt")
|
253 |
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
|
254 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
|
255 |
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
|
256 |
+
|
257 |
with gr.Column():
|
258 |
+
with gr.Group():
|
259 |
+
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
|
260 |
+
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5)
|
261 |
+
with gr.Group():
|
262 |
+
seed = gr.Slider(
|
263 |
+
label="Seed",
|
264 |
+
info = "-1 denotes a random seed",
|
265 |
+
minimum=-1,
|
266 |
+
maximum=423538377342,
|
267 |
+
step=1,
|
268 |
+
value=-1
|
269 |
+
)
|
270 |
+
last_used_seed = gr.Number(
|
271 |
+
label = "Last used seed",
|
272 |
+
info = "the seed used in the last generation",
|
273 |
+
)
|
274 |
+
|
275 |
use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
|
276 |
+
|
277 |
+
with gr.Box():
|
278 |
+
with gr.Row():
|
279 |
+
with gr.Column():
|
280 |
+
if not is_shared_ui:
|
281 |
+
your_username = api.whoami()["name"]
|
282 |
+
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
|
283 |
+
model_names = [item.modelId for item in my_models]
|
284 |
+
|
285 |
+
if not is_shared_ui:
|
286 |
+
custom_model = gr.Dropdown(
|
287 |
+
label = "Your custom model ID",
|
288 |
+
info="You can pick one of your private models",
|
289 |
+
choices = model_names,
|
290 |
+
allow_custom_value = True
|
291 |
+
#placeholder = "username/model_id"
|
292 |
+
)
|
293 |
+
else:
|
294 |
+
custom_model = gr.Textbox(
|
295 |
+
label="Your custom model ID",
|
296 |
+
placeholder="your_username/your_trained_model_name",
|
297 |
+
info="Make sure your model is set to PUBLIC"
|
298 |
+
)
|
299 |
+
|
300 |
+
weight_name = gr.Dropdown(
|
301 |
+
label="Safetensors file",
|
302 |
+
#value="pytorch_lora_weights.safetensors",
|
303 |
+
info="specify which one if model has several .safetensors files",
|
304 |
+
allow_custom_value=True,
|
305 |
+
visible = False
|
306 |
+
)
|
307 |
+
with gr.Column():
|
308 |
+
with gr.Group():
|
309 |
+
load_model_btn = gr.Button("Load my model", elem_id="load_model_btn")
|
310 |
+
previous_model = gr.Textbox(
|
311 |
+
visible = False
|
312 |
+
)
|
313 |
+
model_status = gr.Textbox(
|
314 |
+
label = "model status",
|
315 |
+
show_label = False,
|
316 |
+
elem_id = "status_info"
|
317 |
+
)
|
318 |
+
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
|
319 |
+
|
320 |
+
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9)
|
321 |
+
|
322 |
submit_btn = gr.Button("Submit")
|
323 |
+
|
324 |
result = gr.Image(label="Result")
|
325 |
|
326 |
+
custom_model.blur(
|
327 |
+
fn=custom_model_changed,
|
328 |
+
inputs = [custom_model, previous_model],
|
329 |
+
outputs = [model_status],
|
330 |
+
queue = False
|
331 |
+
)
|
332 |
+
load_model_btn.click(
|
333 |
+
fn = load_model,
|
334 |
+
inputs=[custom_model],
|
335 |
+
outputs = [previous_model, model_status, weight_name, trigger_word],
|
336 |
+
queue = False
|
337 |
+
)
|
338 |
submit_btn.click(
|
339 |
fn = infer,
|
340 |
+
inputs = [use_custom_model, custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
|
341 |
+
outputs = [result, last_used_seed]
|
342 |
)
|
343 |
|
344 |
demo.queue(max_size=12).launch()
|